QUANTA®

QXXXXH FREQUENCY/RATE

DIGITAL PANEL METER

Operator's Manual
Additional products from

NEWPORT Electronics, Inc.

<table>
<thead>
<tr>
<th>Counters</th>
<th>Rate Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Meters</td>
<td>Timers</td>
</tr>
<tr>
<td>PID Controllers</td>
<td>Totalizers</td>
</tr>
<tr>
<td>Clock/Timers</td>
<td>Strain Gauge Meters</td>
</tr>
<tr>
<td>Printers</td>
<td>Voltmeters</td>
</tr>
<tr>
<td>Process Meters</td>
<td>Multimeters</td>
</tr>
<tr>
<td>On/Off Controllers</td>
<td>Soldering Iron Testers</td>
</tr>
<tr>
<td>Recorders</td>
<td>pH pens</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>pH Controllers</td>
</tr>
<tr>
<td>Transmitters</td>
<td>pH Electrodes</td>
</tr>
<tr>
<td>Thermocouples</td>
<td>RTDs</td>
</tr>
<tr>
<td>Thermistors</td>
<td>Thermowells</td>
</tr>
<tr>
<td>Wire</td>
<td>Flow Sensors</td>
</tr>
</tbody>
</table>

For Immediate Assistance

- In the U.S.A. and Canada: 1-800-NEWPORT®
- In Mexico: (95) 800-NEWPORT™
- Or call your local NEWPORT Office.

NEWPORTnet™ On-Line Service

http://www.newportUS.com

Internet e-mail

info@newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. **WARNING:** These products are not designed for use in, and should not be used for, patient connected applications.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.
TABLE OF CONTENTS

SAFETY CONSIDERATIONS .. iii
QUANTA CROSS REFERENCE ... iv

Q2000 MAIN ASSEMBLY
 1.0 Specifications ... 1
 2.0 Mechanical Assembly and Installation 4
 3.0 Power and Signal Input Connections 5
 4.0 Configuration Procedure .. 6
 5.0 Configuration Charts ... 7
 6.0 Tests and Diagnostics .. 9
 7.0 Main Board Connector Assignments 10
 8.0 Assembly Drawings ... 11

Q9000 MAIN ASSEMBLY
 9.0 Specifications ... 17
 10.0 Mechanical Assembly and Installation 20
 11.0 Power and Signal Input Connections 21
 12.0 Configuration Procedure .. 22
 13.0 Configuration Charts .. 23
 14.0 Tests and Diagnostics .. 26
 15.0 Main Board Connector Assignments 27
 16.0 Assembly Drawings ... 28

SIGNAL CONDITIONER, BSCH1
 17.0 Specifications ... 31
 18.0 Signal Input Connections ... 33
 19.0 Test and Diagnostics .. 34
 20.0 Configuration Procedure .. 34
 21.0 Configuration Charts .. 36
 22.0 Calibration for Q2000H / Q9000H 38
 23.0 Drawings ... 39

INSTALLATION INSTRUCTIONS
 24.0 Digital Panel Meter Installation Instructions 41
 25.0 Power Requirements and Connections 43

* The BSCH1 option board is compatible with both Q2000 and Q9000 main assemblies.
SAFETY CONSIDERATIONS

This device is marked with the international Caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

Unpacking & Inspection

Unpack the instrument and inspect for obvious shipping damage. Do not attempt to operate the unit if damage is found.

This instrument is a panel mount device protected in accordance with Class I of EN 61010 (115/230 AC power connections). Installation of this instrument should be done by Qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall not interrupt the Protective Conductor (Earth wire), and it shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the mains supply cord.

Furthermore, to provide protection against excessive energy being drawn from the mains supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

• The Protective Conductor must be connected for safety reasons. Check that the power cable has the proper Earth wire, and it is properly connected. It is not safe to operate this unit without the Protective Conductor Terminal connected.

• Do not exceed voltage rating on the label located on the top of the instrument housing.
• Always disconnect power before changing signal and power connections.
• Do not use this instrument on a work bench without its case for safety reasons.
• Do not operate this instrument in flammable or explosive atmospheres.
• Do not expose this instrument to rain or moisture.
• Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
• Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

• Whenever EMC is an issue, always use shielded cables.
• Never run signal and power wires in the same conduit.
• Use signal wire connections with twisted-pair cables.
• Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.
QUANTA CROSS REFERENCE

CONFIGURED MODEL

<table>
<thead>
<tr>
<th>2</th>
<th>9</th>
<th></th>
<th></th>
<th></th>
<th>MODULE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BQ2X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BQ9X</td>
</tr>
</tbody>
</table>

DISPLAY RESOLUTION
- ±1999 counts (3 1/2 digits)
- ±9999 counts (4 digits)

DISPLAY TYPE & METER POWER
(LCD is only available on Q2000 models)
- LED, 120 V ac (50/60 Hz)
- LCD, 120 V ac (50/60 Hz)
- LED, 240 V ac (50/60 Hz)
- LCD, 240 V ac (50/60 Hz)
- LED, 9-32 V dc (isolated)
- LCD, 9-32 V dc (isolated)
- LED, 5 V dc
- LCD, 5 V dc
- LED, 24 V ac
- LCD, 24 V ac
- LED, 26-56 V dc (isolated)
- LCD, 26-56 V dc (isolated)

ANALOG OUTPUTS
- ±1 or ±2 V (standard, all models)
- 0-5 V dc
- 0-10 V dc
- 0-1 mA, source or sink
- 4-20 mA, source or sink
- 4-20 mA, sink (high-compliance)

CONTROL OUTPUTS
- None
- Dual-setpoint 10 A relays
- Proportional 4-20 mA control, source or sink, plus drive for time-proportional solid-state relay
- Proportional 4-20 mA control, source or sink, plus time-proportional solid-state 2 A relay
- Parallel BCD (isolated)
- Single-setpoint 10 A relay

SIGNAL-CONDITIONER INPUTS
- DC voltage
- DC current
- AC voltage
- AC current
- True RMS voltage
- True RMS current
- Frequency/rate
- Type J thermocouple (°C or °F)
- Type K thermocouple (°C or °F)
- Type T thermocouple (°C or °F)
- RTD, normal resolution (°C or °F)
- RTD, high resolution (°C or °F)
- 3-wire ratio (potentiometer)
- 2- or 4-wire resistance
- Process signal (e.g., 4-20 mA, 1-5 V)
- Process signal plus excitation
- Strain gauge/low-level input
- Prototyping
1.0 MAIN ASSEMBLY Q2000 SPECIFICATIONS

1.1 GENERAL

The Q2000 main assemblies are identified by an initial designator (BQ2) plus a power/display option numeral, zero thru nine (0-9).

The following table identifies the main assembly types:

<table>
<thead>
<tr>
<th>Display Type</th>
<th>120 V ac</th>
<th>240 V ac</th>
<th>9-32 V dc</th>
<th>5 V ac</th>
<th>24 V ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>BQ20</td>
<td>BQ22</td>
<td>BQ24</td>
<td>BQ26</td>
<td>BQ28</td>
</tr>
<tr>
<td>LCD</td>
<td>BQ21</td>
<td>BQ23</td>
<td>BQ25</td>
<td>BQ27</td>
<td>BQ29</td>
</tr>
</tbody>
</table>

The QUANTA Digital Panel Meter/Controller consists of a main assembly, signal conditioner and interface options (if ordered) all housed in a 1/8 DIN case.

The main assembly consists of a main board and a display board which is permanently attached to it at a 90 degree angle.

The main board provides mounting for the power supply, circuit components, and connectors for plugging in the signal conditioner, optional analog card, and optional controller/communications interface card (requires removal of a bypass push-on jumper).

The display board includes the analog-to-digital converter, the LED or LCD display and the push-on jumper for programming the decimal points. Decimal point programming may also be done from the main board connector (J1).
1.2 POWER
AC Models: 24/120/240 V +10/-15% 47-63 Hz
Common Mode Voltage: 1500 Vp test (354 Vp per IEC spacing)
DC Models: 5 V ±5% (5 V return common to signal LO)
9-32 V (300 V isolation from 9-32 V return to signal LO)
Source Impedance: 3 ohms
Ripple: 250 mV maximum
Power Consumption: 5 watts maximum

1.3 DISPLAY
LED: 14.2 mm (0.56 in), 7-segment light emitting diode
Lens color: Red
LCD: 12.7 mm (0.50 in), 7-segment liquid crystal
Lens color: Clear
Range: 0 to ±1999
Overload Indication: Three least significant digits blanked, "1" or "-1" displayed

1.4 CONVERSION
Technique: auto-zero, dual slope, average value
Signal Integration Period: 100 ms, nominal
Reading Rate: 2.5/s, nominal

1.5 ENVIRONMENTAL
Operating Temperature (Ambient): 0-60°C
Storage Temperature: -40 to 85°C
Humidity: To 95% RH, non-condensing, 0-40°C

1.6 MECHANICAL
Case Material: UL-rated 94V-0, polycarbonate
Weight: 0.57 kg (with interface board)
2.0 MECHANICAL ASSEMBLY & INSTALLATION

2.1 PANEL MOUNTING PROCEDURE (SEE FIGURE 1)

1. Remove the main board edge connector (J1), if installed.
2. Remove the interface board connector (J2), if installed.
3. Loosen two clamp screws on the rear of the case enough to rotate the two slide clamps.
4. Slide the two slide retainers toward the rear of the case and remove them.
5. From the front of the panel, insert the meter into the panel cutout.
6. Slide the slide retainers back onto the case and push up tightly against the rear of the panel.
7. Rotate the slide clamps back into their original position and tighten enough to hold the case in place. Overtightening can break the clamps.
8. Install any connectors removed.

2.2 LABELS (SEE FIGURE 2)

NOTE: READ LABELS FROM THE REAR

FIGURE 2. LABEL PLACEMENT
3.0 POWER & SIGNAL INPUT CONNECTIONS

WARNING: Incorrect power input can damage your QUANTA PANEL METER

3.1 POWER CONNECTIONS

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>AC Versions</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC power HI</td>
<td>Black</td>
</tr>
<tr>
<td>2</td>
<td>AC power LO (neutral)</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>AC power GND</td>
<td>Green</td>
</tr>
</tbody>
</table>

REAR TERMINAL VIEW

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>DC Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No connection</td>
</tr>
<tr>
<td>2</td>
<td>DC power +</td>
</tr>
<tr>
<td>3</td>
<td>DC power - (return)</td>
</tr>
</tbody>
</table>

3.2 SIGNAL INPUT CONNECTIONS

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>6 Terminal Versions</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Analog GND</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Signal LO</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Signal HI</td>
<td></td>
</tr>
</tbody>
</table>

REAR TERMINAL VIEW

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>7 Terminal Versions</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-E (Excitation return)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-S (Signal LO input)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+S (Signal HI input)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+E (Excitation output)</td>
<td></td>
</tr>
</tbody>
</table>
4.0 CONFIGURATION PROCEDURE

This procedure is used to set the decimal point of the display and interface board signal bypass selections for the configuration of the QUANTA Q2XXXX Display and power options (BQ20 through BQ29).

The main assembly can be configured using the push-on jumpers provided or already positioned on the pin forests. Pin forest designations are shown at the top of every page of the configuration charts.
5.0 CONFIGURATION CHARTS
5.1 DECIMAL POINT SELECTION

![Diagram showing S1 and push-on jumpers A, B, C, D.]

<table>
<thead>
<tr>
<th>Decimal Point Selection</th>
<th>S1</th>
<th>Alternate Decimal Point Selection Using Main Assembly Board (J1) Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Point (1.999)</td>
<td>A</td>
<td>Connect J1-K/9 to J1-6</td>
</tr>
<tr>
<td>Decimal Point (19.99)</td>
<td>B</td>
<td>Connect J1-J/8 to J1-6</td>
</tr>
<tr>
<td>Decimal Point (199.9)</td>
<td>C</td>
<td>Connect J1-H/7 to J1-6</td>
</tr>
<tr>
<td>No Decimal Point (1999)</td>
<td>D</td>
<td>No Connection</td>
</tr>
</tbody>
</table>

Step 1: Remove all push-on jumpers not used in the desired configuration(s).

Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.
5.2 INTERFACE BOARD SIGNAL BYPASS SELECTION

Step 1: Check your QUANTA part number for a zero (0) in the following position; Q2XXOX. If there is a zero (0) in that position, interface board signal bypass is required.

Step 2: Remove all push-on jumpers not used in the desired configuration(s)

Step 3: Select the desired configuration from the chart below, then install the push-on jumpers indicated.

<table>
<thead>
<tr>
<th>Interface Board Signal Configuration</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Board Signal Bypass</td>
<td>A</td>
</tr>
</tbody>
</table>
6.0 TESTS & DIAGNOSTICS

6.1 TEST CONFIGURATION REQUIREMENTS
The QUANTA main assembly is designed to function with a signal conditioner board as a minimum configuration. There is no provision for testing a main assembly alone.

6.2 SIGNAL INPUT REQUIREMENTS
Signal input requirements for your configuration are identified in the signal conditioner section of this manual.
7.0 MAIN BOARD CONNECTOR PIN ASSIGNMENTS (J1)

(Left to right, looking at the rear of the case)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - 1</td>
<td>Spare</td>
</tr>
<tr>
<td>B 2</td>
<td>-8.2 V dc Analog power</td>
</tr>
<tr>
<td>C 3</td>
<td>Spare</td>
</tr>
<tr>
<td>D 4</td>
<td>+ Pol (sign)</td>
</tr>
<tr>
<td>E 5</td>
<td>Spare</td>
</tr>
<tr>
<td>F 6</td>
<td>Buffer</td>
</tr>
<tr>
<td>H 7</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>J 8</td>
<td>199.9 (Decimal point)</td>
</tr>
<tr>
<td>K 9</td>
<td>1.999 (Decimal point)</td>
</tr>
<tr>
<td>L 10</td>
<td>Test (LED version only)</td>
</tr>
<tr>
<td>M 11</td>
<td>+5 V dc</td>
</tr>
<tr>
<td>N 12</td>
<td>Analog output</td>
</tr>
<tr>
<td>P 13</td>
<td>Integrator output</td>
</tr>
<tr>
<td>R 14</td>
<td>10 mV Hysteresis</td>
</tr>
<tr>
<td>S 15</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>T 16</td>
<td>Analog Option - Return</td>
</tr>
<tr>
<td>U 17</td>
<td>Analog Option - Out</td>
</tr>
<tr>
<td>V 18</td>
<td>Spare</td>
</tr>
</tbody>
</table>

- Indicates common pin

CAUTION: A maximum total current of 50 mA is available for all signal conditioner excitation outputs, 4-20 mA controller and analog output combinations.

REAR TERMINAL VIEW

![Rear Terminal View Diagram]
8.0 DRAWINGS
8.1 DIMENSIONS

NOTE: Dimensions in Millimeters (Inches)

TERMINAL BLOCK COVER

PANEL THICKNESS
1.5
R(.06)
4 PLCS
45.00 + 0.61/-0.00
(1.772 + .024/–.000)
92.00 + 0.81/-0.00
(3.622 + .032/–.000)

CASE
SLIDE
RETAINER
MAX
CLAMP
RING

MAX

REAR VIEW

TERMINAL BLOCK COVER AND BEZEL NOT SHOWN FOR CLARITY)
SLIDE CLAMPS ROTATED AND SLIDE RETAINERS REMOVED AS SHOWN FOR INSTALLATION.

8.0 DRAWINGS
8.1 DIMENSIONS

SLIDE RETAINER
CASE
CLAMP RING
TERMINAL BLOCK COVER

Notes: Dimensions are in inches ±0.01”
with millimeters in [] ±0.25 mm.
9.0 MAIN ASSEMBLY Q9000 SPECIFICATIONS

9.1 GENERAL

QUANTA Q9000 main assemblies are identified by an initial designator (BQ9) plus a power/display option numeral: 0, 2, 4, 6 or 8.

The following table identifies the main assembly types:

<table>
<thead>
<tr>
<th>Display Type</th>
<th>120 V ac</th>
<th>240 V ac</th>
<th>9-32 V dc</th>
<th>5 V ac</th>
<th>24 V ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>BQ90</td>
<td>BQ92</td>
<td>BQ94</td>
<td>BQ96</td>
<td>BQ98</td>
</tr>
</tbody>
</table>

The QUANTA Digital Panel Meter/Controller consists of a main assembly, signal conditioner and interface options (if ordered) all housed in a 1/8 DIN case.

The main assembly consists of a main board and a display board which is permanently attached to it at a 90 degree angle.

The main board provides mounting for the power supply, circuit components, and connectors for plugging in the signal conditioner, optional analog card, and optional controller/communications interface card (requires removal of a bypass push-on jumper).

The display board includes the analog-to-digital converter, the LED display and the push-on jumper for programming the decimal points. Decimal point programming may also be done from the main board connector (J1).
9.2 POWER
AC Models: 24/120/240 V ±10/-15% 47-63 Hz
Common Mode Voltage: 1500 Vp test (354 Vp per IEC spacing)
DC Models: 5 V ±5% (5 V return common to signal LO)
9-32 V (300 V isolation from 9-32 V return to signal LO)
Source Impedance: 3 ohms
Ripple: 250 mV maximum
Power Consumption: 5 watts maximum

9.3 DISPLAY
LED: 14.2 mm (0.56 in), 7-segment light emitting diode
Lens color: Red
Range: 0 to ±9999, digits flash form 10K-20K counts
Overload Indication: Four digits flash zeros at 20K and above

9.4 CONVERSION
Technique: Auto-zero, dual slope, average value
Signal Integration Period: 100 ms, nominal
Reading Rate: 2.5/s, nominal

9.5 ENVIRONMENTAL
Operating Temp. (Ambient): 0 to 60°C
Storage Temp.: -40 to 85°C
Humidity: To 95% RH, non-condensing, 0-40°C

9.6 MECHANICAL
Case Material: UL-rated 94V-0, polycarbonate
Weight: 0.57 kg (with interface board)
10.0 MECHANICAL ASSEMBLY & INSTALLATION

10.1 PANEL MOUNTING PROCEDURE (SEE FIGURE 3)

1. Remove the main board edge connector (J1), if installed.
2. Remove the interface board connector (J2), if installed.
3. Loosen two clamp screws on the rear of the case enough to rotate the two slide clamps.
4. Slide the two slide retainers toward the rear of the case and remove them.
5. From the front of the panel, insert the meter into the panel cutout.
6. Slide the slide retainers back onto the case and push up tightly against the rear of the panel.
7. Rotate the slide clamps back into their original position and tighten enough to hold the case in place. Overtightening can break the clamps.

8. Install any connectors removed.

10.2 LABELS (SEE FIGURE 4)

Note: Read labels from the rear

FIGURE 4. LABEL PLACEMENT
11.0 POWER & SIGNAL INPUT CONNECTIONS

WARNING: Incorrect power input can damage your QUANTA PANEL METER.

11.1 POWER CONNECTIONS

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>AC Versions</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC power HI</td>
<td>Black</td>
</tr>
<tr>
<td>2</td>
<td>AC power LO (neutral)</td>
<td>White</td>
</tr>
<tr>
<td>3</td>
<td>AC power GND</td>
<td>Green</td>
</tr>
</tbody>
</table>

REAR TERMINAL VIEW

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>DC Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No connection</td>
</tr>
<tr>
<td>2</td>
<td>DC power +</td>
</tr>
<tr>
<td>3</td>
<td>DC power - (return)</td>
</tr>
</tbody>
</table>

11.2 SIGNAL INPUT CONNECTIONS

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>6 Terminal Versions Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Analog GND</td>
</tr>
<tr>
<td>5</td>
<td>Signal LO</td>
</tr>
<tr>
<td>6</td>
<td>Signal HI</td>
</tr>
</tbody>
</table>

REAR TERMINAL VIEW

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>7 Terminal Versions Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-E (Excitation return)</td>
</tr>
<tr>
<td>5</td>
<td>-S (Signal LO input)</td>
</tr>
<tr>
<td>6</td>
<td>+S (Signal HI input)</td>
</tr>
<tr>
<td>7</td>
<td>+E (Excitation output)</td>
</tr>
</tbody>
</table>
12.0 CONFIGURATION PROCEDURE

This procedure is used to set the decimal point of the display and interface board signal bypass selections for the configuration of the QUANTA Q9XXXX display and power options (BQ90 through BQ98).

The main assembly can be configured using the push-on jumpers provided or already positioned on the pin forests. Pin forest designations are shown at the top of every page of the configuration charts.
13.0 CONFIGURATION CHARTS

13.1 DECIMAL POINT SELECTION

![Diagram showing push-on jumpers]

<table>
<thead>
<tr>
<th>Decimal Point Selection</th>
<th>S1</th>
<th>Alternate Decimal Point Selection Using Main Assembly Board (J1) Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Point (9.999)</td>
<td>A</td>
<td>Connect J1-K/9 to J1-6</td>
</tr>
<tr>
<td>Decimal Point (99.99)</td>
<td>B</td>
<td>Connect J1-J/8 to J1-6</td>
</tr>
<tr>
<td>Decimal Point (999.9)</td>
<td>C</td>
<td>Connect J1-H/7 to J1-6</td>
</tr>
<tr>
<td>No Decimal Point (9999)</td>
<td>D</td>
<td>No connection</td>
</tr>
</tbody>
</table>
13.2 INTERFACE BOARD SIGNAL BYPASS SELECTION

Step 1: Check your QUANTA part number for a zero (0) in the following position; Q9XX0X. If there is a zero (0) in that position, interface board signal bypass is required.

Step 2: Remove all push-on jumpers not used in the desired configuration(s).

Step 3: Select the desired configuration from the chart below, then install the push-on jumpers indicated.

<table>
<thead>
<tr>
<th>Interface Board Signal Configuration</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Board Signal Bypass</td>
<td>A</td>
</tr>
</tbody>
</table>
13.3 REFERENCE VOLTAGE (RV1, RV2)

Step 1: Remove all push-on jumpers not used in the desired configuration(s).

Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.

<table>
<thead>
<tr>
<th>Reference Voltage Configuration</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV1</td>
<td>1 Volt</td>
</tr>
<tr>
<td>RV2</td>
<td>2 Volts</td>
</tr>
</tbody>
</table>
14.0 TESTS & DIAGNOSTICS

14.1 TEST CONFIGURATION REQUIREMENTS

The QUANTA main assembly is designed to function with a signal conditioner board as a minimum configuration. There is no provision for testing a main assembly alone.

14.2 SIGNAL INPUT REQUIREMENTS

Signal input requirements for your configuration are identified in the signal conditioner section of this manual.
15.0 MAIN BOARD CONNECTOR PIN ASSIGNMENTS (J1)

(Left to right, looking at the rear of the case)

<table>
<thead>
<tr>
<th>Connection</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - 1</td>
<td>Spare</td>
</tr>
<tr>
<td>B 2</td>
<td>Oscillator 40 kHz</td>
</tr>
<tr>
<td>C - 3</td>
<td>-8.2 V dc Analog power</td>
</tr>
<tr>
<td>D 4</td>
<td>+ Pol (sign) Analog power</td>
</tr>
<tr>
<td>E - 5</td>
<td>+ Polarity Sign</td>
</tr>
<tr>
<td>F 6</td>
<td>HOLD (LED version only) Integrator output</td>
</tr>
<tr>
<td>H - 7</td>
<td>Digital Ground Use with pin 6</td>
</tr>
<tr>
<td>J - 8</td>
<td>199.9 (Decimal point) Use with pin 6</td>
</tr>
<tr>
<td>K - 9</td>
<td>19.99 (Decimal point) Use with pin 6</td>
</tr>
<tr>
<td>L - 10</td>
<td>Test (LED version only) Use with pin M/11</td>
</tr>
<tr>
<td>M - 11</td>
<td>+5 V dc Analog & digital power</td>
</tr>
<tr>
<td>N - 12</td>
<td>Analog output Standard (1 mV/count)</td>
</tr>
<tr>
<td>P - 13</td>
<td>Spare - Excitation sense</td>
</tr>
<tr>
<td>R - 14</td>
<td>10 mV Hysteresis With analog option</td>
</tr>
<tr>
<td>S - 15</td>
<td>Analog Ground With analog option</td>
</tr>
<tr>
<td>T - 16</td>
<td>Analog Option - Return Unregulated power</td>
</tr>
<tr>
<td>U 17</td>
<td>Analog Option - Out + Excitation sense</td>
</tr>
<tr>
<td>V - 18</td>
<td>Spare</td>
</tr>
</tbody>
</table>

- Indicates common pin

CAUTION: A maximum total current of 50 mA is available for all signal conditioner excitation outputs, 4-20 mA controller and analog output combinations.

REAR TERMINAL VIEW

[Diagram showing the connector pins, labeled J1]
PANEL THICKNESS

1.5
R(.06)
4 PLCS
45.00 + 0.61/-0.00
(1.772 + .024/-0.000)
92.00 + 0.81/-0.00
(3.622 + .032/-0.000)

NOTE: Dimensions in Millimeters (Inches)

REAR VIEW

TERMINAL BLOCK COVER AND BEZEL NOT SHOWN FOR CLARITY
SLIDE CLAMPS ROTATED AND SLIDE RETAINERS REMOVED AS SHOWN FOR INSTALLATION.

16.0 DRAWINGS
16.1 DIMENSIONS

Notes: Dimensions are in inches ±0.01" with millimeters in [] ±0.25 mm.
17.0 SPECIFICATIONS: BSCH1, FREQUENCY/RATE

17.1 GENERAL

This option board is identified as a BSCH1 (Q2000H1 or Q9000H1). The Q2000 or Q9000 prefix is determined by the main assembly board used with the BSCH1 option.

The Q2000H1 provides scaling capability to permit a 1999 count readout; the Q9000H1 permits a 9999 count readout. The input frequency span is from 100 Hz to 20 kHz in 9 ranges: 100 to 200 Hz, 200 to 400 Hz, 400 to 800 Hz, 500 to 1000 Hz, 1000 to 2000 Hz, 2000 to 4000 Hz, 2500 to 5000 Hz, 5000 to 10,000 Hz and 10,000 to 20,000 Hz.

Formulas are given for determining the proper input range, based on the desired input values and readout values chosen.

17.2 Q2000H1 & Q9000H1: FREQUENCY INPUT SPECIFICATIONS

Configuration AC and dc inputs are single-ended, meter ground common to input L0

Maximum Input 130 V RMS

Q2000H1 FREQUENCY/RATE INPUTS

<table>
<thead>
<tr>
<th>FULL SCALE FREQUENCY</th>
<th>MINIMUM INPUT WITH HYSTERESIS *</th>
<th>INPUT RESISTANCE</th>
<th>MINIMUM FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 mV MINIMUM</td>
<td>100 mV MAXIMUM</td>
<td></td>
</tr>
<tr>
<td>100 to 2000 Hz</td>
<td>15 mV p-p</td>
<td>125 mV p-p</td>
<td>150 kOhm</td>
</tr>
<tr>
<td>2000 to 5000 Hz</td>
<td>30 mV p-p</td>
<td>125 mV p-p</td>
<td></td>
</tr>
<tr>
<td>5000 to 20000 Hz</td>
<td>90 mV p-p</td>
<td>175 mV p-p</td>
<td></td>
</tr>
</tbody>
</table>

* 10 mV or 100 mV can be selected by rear-connector or internal push-on jumpers.
Q9000H1 FREQUENCY/RATE INPUTS

<table>
<thead>
<tr>
<th>FULL SCALE RANGE</th>
<th>10 mV HYSTERESIS SELECTION</th>
<th>100 mV HYSTERESIS SELECTION</th>
<th>INPUT RESISTANCE</th>
<th>MINIMUM FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 2000 Hz</td>
<td>15 mV p-p</td>
<td>125 mV p-p</td>
<td>150 kOhm</td>
<td>5% of full scale</td>
</tr>
<tr>
<td>2000 to 5000 Hz</td>
<td>30 mV p-p</td>
<td>125 mV p-p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 to 20000 Hz</td>
<td>90 mV p-p</td>
<td>175 mV p-p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 10 mV or 100 mV hysteresis can be selected by rear-connector or internal push-on jumper.

Zero Adjustment
Externally adjustable by potentiometer from 400 to 9000 counts dependent on full scale

Trigger Level Adjustment
Externally adjustable by potentiometer from -1 V to +4 V with 100 mV hysteresis or -0.1 V to +0.4 V with 10 mV hysteresis

Full-scale Frequency Adjustment
Externally adjustable by potentiometer (internally by push-on jumpers)

Full-scale Frequency Range
100 Hz to 20 kHz

Common Mode
Analog ground to ac power ground
CMR at dc to 60 Hz 120 dB
CMV at dc to 60 Hz ±1500 Vp per HV test ±354 Vp per IEC spacing

Accuracy at 25°C, 115 V ac

Maximum Error
Q2000H1 ±0.1% FS ±1 count
Q9000H1 ±0.1% FS ±2 counts

Reading Tempco
±0.01% R/°C

Zero Tempco
±0.1 count/°C

Warmup to rated accuracy
Less than 1 minute

Full-scale step response
3.0 s

Minimum Reading
Q2000H1 100 counts (without display noise)
Q9000H1 500 counts (without display noise)
18.0 SIGNAL INPUT CONNECTIONS (TB1) (SEE FIGURE 5)

The signal input connections for the Q2000H1 and Q9000H1 Frequency/Rate signal conditioner are made at the standard 3-terminal barrier strip:

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>Signal</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Signal HI (ac coupled)</td>
<td>AC</td>
</tr>
<tr>
<td>5</td>
<td>Signal LO</td>
<td>COUPLED</td>
</tr>
<tr>
<td>6</td>
<td>Signal HI (dc coupled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>Signal</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Signal HI (ac coupled)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Signal LO</td>
<td>DC</td>
</tr>
<tr>
<td>6</td>
<td>Signal HI (dc coupled)</td>
<td>COUPLED</td>
</tr>
</tbody>
</table>

3 TERMINAL SIGNAL

REAR TERMINAL VIEW

FIGURE 5. SIGNAL INPUT CONNECTIONS
19.0 TESTS AND DIAGNOSTICS

- The signal conditioner board BSCH1 is designed to function with a main assembly as a minimum configuration. There is no provision for testing a signal conditioner board alone.

- Signal input requirements for your configuration are identified in the specifications for the BSCH1 signal conditioner.

- Operating power and connections for your configuration are identified in the Main Assembly Section of this manual.

NOTE: If using Main Assembly Q2000, refer to Section BQ20/BQ29.
If using Main Assembly Q9000, refer to Section BQ90/BQ98.

- Inspect the QUANTA panel meter for physical damage. If damage is apparent, resolve the damage with the shipper or your supplier.

19.1 FUNCTIONAL ELECTRICAL TESTING

NOTE: Perform this test after your meter has been configured.

1. Short terminals 4, 5 and 6 on barrier strip (TB1).
2. Apply proper power for your configuration to terminals 1, 2 and 3 on barrier strip (TB1). Display will read approximately zero (0000).

20.0 CONFIGURATION PROCEDURE

20.1 GENERAL

Use this procedure to determine the configuration of the BSCH1 Frequency/Rate Option.

Configure the meter using the push-on jumpers provided separately or already positioned on the pin forests. Pin forest designations are shown with each configuration chart.

20.2 GLOSSARY

The chart below explains various terms which appear throughout the following procedure:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFR1</td>
<td>100/200 Hz</td>
</tr>
<tr>
<td>HFR2</td>
<td>200/400 Hz</td>
</tr>
<tr>
<td>HFR3</td>
<td>400/800 Hz</td>
</tr>
<tr>
<td>HFR4</td>
<td>500/1000 Hz</td>
</tr>
<tr>
<td>HFR5</td>
<td>1/2 kHz</td>
</tr>
<tr>
<td>HFR6</td>
<td>2/4 kHz</td>
</tr>
<tr>
<td>HFR7</td>
<td>2.5/5 kHz</td>
</tr>
<tr>
<td>HFR8</td>
<td>5/10 kHz</td>
</tr>
<tr>
<td>HFR9</td>
<td>10/20 kHz</td>
</tr>
<tr>
<td>HS1</td>
<td>100 mV hysteresis</td>
</tr>
<tr>
<td>HS2</td>
<td>10 mV hysteresis</td>
</tr>
</tbody>
</table>
20.3 SELECTION

20.3.1 Hysteresis Selection (HS1,2)
Standard units will be configured as a HS1 (100 mV hysteresis). If a 10 mV hysteresis is desired, then HS2 should be selected.

20.3.2 Full Scale Frequency Range Selection (HFR1,2,3,4,5,6,7,8,9)
1. Determine the desired maximum input frequency (F) in Hertz.
 \[F = \] ________________

2. Determine the desired display reading (R) for the frequency given above.
 \[R = \] ________________

3. Determine the full-scale input frequency range number (RN).
 \[
 \begin{align*}
 RN_{Q2000H1} &= \frac{2000}{F \times R} \\
 RN_{Q9000H1} &= \frac{10000}{F \times R}
 \end{align*}
 \]
 RN = ________________
 RN = ________________

4. Select the required full-scale frequency range which the full-scale input frequency range number (RN) falls between the upper and lower limits of that range.
 \[
 \begin{align*}
 HFR1 &= \frac{100}{200} \text{ Hz} \\
 HFR2 &= \frac{200}{400} \text{ Hz} \\
 HFR3 &= \frac{400}{800} \text{ Hz} \\
 HFR4 &= \frac{500}{1000} \text{ Hz} \\
 HFR5 &= \frac{1}{2} \text{ kHz}
 \end{align*}
 \]
 HFR = ________________

5. Proceed to Installation (Section 20.4).

20.4 INSTALLATION

20.4.1 General
Select the Hysteresis (HS1,2) and Frequency Range (HFR1-9), required and install the push-on jumpers as per the appropriate Subsection in Section 21.0.

20.4.2 Reference Voltage (Q9000H1 only)
Select reference RV2 by removing any jumpers in the S3 position as per Subsection 13.3 in Main Assembly Section BQ90/BQ98.

20.4.3 Decimal Point
If a decimal point is required, refer to the appropriate Main Assembly Section for location and configuration procedure.

NOTE: If using Main Assembly Q2000, refer to Section BQ20/BQ29. If using Main Assembly Q9000, refer to Section BQ90/BQ98.
21.0 CONFIGURATION CHARTS

21.1 HYSTERESIS (HS1, 2)

Step 1: Remove all push-on jumpers not used in the desired configuration(s).

Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.

<table>
<thead>
<tr>
<th>Hysteresis Configuration</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS1</td>
<td>100 mV Hysteresis</td>
</tr>
<tr>
<td>HS2</td>
<td>10 mV Hysteresis</td>
</tr>
</tbody>
</table>

* Used on the Q2000H1 or Q9000H1
21.2 FREQUENCY RANGE (HFR1,2,3,4,5,6,7,8,9)

Step 1: Remove all push-on jumpers not used in the desired configuration(s).

Step 2: Select the desired configuration from the chart below, then install the push-on jumpers indicated.

<table>
<thead>
<tr>
<th>Frequency Range Configuration *</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFR1 100/200 Hz</td>
<td>B</td>
</tr>
<tr>
<td>HFR2 200/400 Hz</td>
<td>B</td>
</tr>
<tr>
<td>HFR3 400/800 Hz</td>
<td>C</td>
</tr>
<tr>
<td>HFR4 0.5/1 kHz</td>
<td>B</td>
</tr>
<tr>
<td>HFR5 1/2 kHz</td>
<td>B</td>
</tr>
<tr>
<td>HFR6 2/4 kHz</td>
<td>C</td>
</tr>
<tr>
<td>HFR7 2.5/5 kHz</td>
<td>D</td>
</tr>
<tr>
<td>HFR8 5/10 kHz</td>
<td>D</td>
</tr>
<tr>
<td>HFR9 10/20 kHz</td>
<td>E</td>
</tr>
</tbody>
</table>

* Used on the Q2000H1 or Q9000H1
22.0 CALIBRATION FOR Q2000H1 & Q9000H1 (BSCH1)

NOTE: The BSCH1 option is an improved version of the BSCH option. It is compatible with both Q2000 and Q9000 main assemblies.

22.1 FREQUENCY RANGES (H1-9)

1. Apply an input frequency equal to a display reading of zero and adjust R1 for zero display reading.
2. Apply an input frequency equal to the Full-Scale Frequency (F).
3. Adjust R2 to read the desired Display Reading (R) for the maximum input frequency ±1 count.

22.2 TRIGGER LEVEL ADJUSTMENT

NOTE: Use only if input signal does not trigger display.

1. The trigger level adjustment (R6), is located to the left of R2. The trigger level is preset to approximately 0 V dc.
24.0 DIGITAL PANEL METER INSTALLATION INSTRUCTIONS

IMPORTANT:

For proper installation electrical connections must be made according to the model number on the meter label. Write the model number in the following space and use the appropriate instructions for your model number.

--- Power requirement (Section 25.0)
 :
 : --- Analog output (see Analog Output Manual)
 :
 : --- Control output (see Controller/ Interface Manual)
 :
 : --- Signal input (Section 25.3)

Model number Q2
Model number Q9

==

24.1 UNPACKING & INSPECTION

Your QUANTA digital panel meter was systematically inspected and tested, then carefully packed before shipment.

Unpack the instrument and inspect for obvious shipping damage. Notify the freight carrier immediately upon discovery of any shipping damage.

24.2 MECHANICAL INSTALLATION

1. Insure that the panel cutout dimensions are as shown on Figure 6.

2. Remove the lower printed circuit board edge connector, (if installed) J1, by pushing two molded plastic tabs away from the connector body and pulling the connector off the printed circuit board. Remove the printed circuit board edge connector, J2, if upper board output option was ordered.

3. Loosen two clamp screws on the rear of the case enough to rotate the two slide clamps.

4. Slide the two slide retainers toward the rear of the case and remove them.

5. From the front of the panel, insert the meter into the panel cutout.

6. Slide the slide retainers back onto the case and push up tightly against the rear of the panel.

7. Rotate the slide clamps back into their original position and tighten enough to hold the case in place. Overtightening can break the clamps.

8. Install the lower printed circuit board edge connector, if supplied, by pushing it on to the printed circuit board connections. Install the upper printed circuit board edge connector, if used.
NOTE: Dimensions in Millimeters (Inches)

REAR VIEW
(TERMIAL BLOCK COVER AND BEZEL NOT SHOWN FOR CLARITY)
SLIDE CLAMPS ROTATED AND SLIDE RETAINERS REMOVED AS SHOWN FOR INSTALLATION.
25.0 POWER REQUIREMENTS AND CONNECTIONS (TB1)

25.1 The standard meter is wired to operate from one of five power sources.

<table>
<thead>
<tr>
<th>Models</th>
<th>Power Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20XXX, Q21XXX and Q90XXX</td>
<td>120 V ac (50-60 Hz)</td>
</tr>
<tr>
<td>Q22XXX, Q23XXX and Q92XXX</td>
<td>240 V ac (50-60 Hz)</td>
</tr>
<tr>
<td>Q24XXX, Q25XXX and Q94XXX</td>
<td>9-32 V dc</td>
</tr>
<tr>
<td>Q26XXX, Q27XXX and Q96XXX</td>
<td>5 V dc</td>
</tr>
<tr>
<td>Q28XXX, Q29XXX and Q98XXX</td>
<td>24 V ac (50-60 Hz)</td>
</tr>
</tbody>
</table>

25.2 Regardless of the power source used, connections are made to the same terminal barrier strip, TB1, as follows:

- **TB1 Terminal Connection**
 - 1: AC power HI
 - 2: AC power LO (neutral)
 - 3: AC power GND

 Wire Color
 - Black
 - White
 - Green

REAR TERMINAL VIEW

- **TB1 Terminal Connection**
 - 1: No Connection
 - 2: DC power +
 - 3: DC power - (return)
25.3 SIGNAL INPUT CONNECTIONS (TBL)

The signal input connections for the BSCHI signal conditioner are made at the same terminal barrier strip, TBL, as follows:

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>Signal</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Signal HI (AC coupled)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Signal LO</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Signal HI (DC coupled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal Connection</th>
<th>Signal</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Signal HI (AC coupled)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Signal LO</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Signal HI (DC coupled)</td>
<td></td>
</tr>
</tbody>
</table>

3 TERMINAL SIGNAL

REAR TERMINAL VIEW
NEWPORT ELECTRONICS, INC. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from date of purchase. In addition to NEWPORT’s standard warranty period, NEWPORT ELECTRONICS will extend the warranty period for one (1) additional year if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

DIRECT all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence. The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting NEWPORT:
1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:
1. P.O. number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

NEWPORT is a registered trademark of NEWPORT ELECTRONICS, INC.

© Copyright 2011 NEWPORT ELECTRONICS, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT ELECTRONICS, INC.