This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

© Copyright 1998, NEWPORT Electronics, Inc. All rights reserved.

This documentation may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT Electronics, Inc.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>.ii</td>
</tr>
<tr>
<td>Models Available</td>
<td>.iii</td>
</tr>
<tr>
<td>Section 1</td>
<td>Introduction .1</td>
</tr>
<tr>
<td>1.1</td>
<td>Unpacking .1</td>
</tr>
<tr>
<td>1.2</td>
<td>Safety Considerations .2</td>
</tr>
<tr>
<td>Section 2</td>
<td>About the Meter .3</td>
</tr>
<tr>
<td>2.1</td>
<td>Front of the Meter .3</td>
</tr>
<tr>
<td>2.2</td>
<td>Back of the Meter .4</td>
</tr>
<tr>
<td>2.3</td>
<td>Connector Description .4</td>
</tr>
<tr>
<td>Section 3</td>
<td>Getting Started .5</td>
</tr>
<tr>
<td>3.1</td>
<td>Main Board Power Jumpers .5</td>
</tr>
<tr>
<td>3.2</td>
<td>Changing the Meter Parameters .7</td>
</tr>
<tr>
<td>3.3</td>
<td>Installation and Panel Mounting .10</td>
</tr>
<tr>
<td>3.4</td>
<td>Sensor Input Connections .12</td>
</tr>
<tr>
<td>3.5</td>
<td>Analog Output Connections .14</td>
</tr>
<tr>
<td>3.6</td>
<td>Display Hold Connections .15</td>
</tr>
<tr>
<td>3.7</td>
<td>Main Power Connections .16</td>
</tr>
<tr>
<td>3.8</td>
<td>Disassembly/Assembly .18</td>
</tr>
<tr>
<td>Section 4</td>
<td>Operation and Calibration .20</td>
</tr>
<tr>
<td>4.1</td>
<td>Equipment Required .20</td>
</tr>
<tr>
<td>4.2</td>
<td>Calibration Procedure .21</td>
</tr>
<tr>
<td>Section 5</td>
<td>Specifications .23</td>
</tr>
<tr>
<td>Section 6</td>
<td>Glossary .26</td>
</tr>
</tbody>
</table>
PREFACE

Manual Objectives: This manual shows you how to set up and use the RTD Panel Thermometer.

This meter is an economical Miniature Temperature Panel Thermometer featuring a large display with a linearized analog output that is supplied as a standard feature.

Each of the models* can be converted by the user to display in degrees Fahrenheit or Celsius between one degree and a tenth degree resolution.

RTD is an abbreviation for resistive temperature detector. The meter is designed to measure 100 ohm platinum resistance with 0.00385 temperature coefficient, also known as the European curve. The RTD will change resistance with a change in temperature. When using a 2-wire measurement configuration, lead wire impedance can contribute significant error to the temperature measurement. When using long lead wires a 3- or 4-wire measurement configuration is recommended.

The meter is available in platinum RTD with 2-, 3-, or 4-wire connections. All of the models listed in Table 1-1 come standard with red LEDs, and can be ordered with a green LED display as an option. The part numbers would then end with “-GR”.

Also, these meters can be ordered with different power configurations. Refer to Table 1-3 for available choices.

*Refer to Table 1-1 for the complete listing of models available.
MODELS AVAILABLE

TABLE 1-1

RTD MODELS AVAILABLE

The following 3-1/2 digit mini RTD panel meters are available and discussed in this Operator’s Manual.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TYPE</th>
<th>°C or °F</th>
<th>RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>305-MF1</td>
<td>RTD</td>
<td>F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>305-MF2</td>
<td>RTD</td>
<td>F</td>
<td>0.1°F</td>
</tr>
<tr>
<td>305-MC1</td>
<td>RTD</td>
<td>C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>305-MC2</td>
<td>RTD</td>
<td>C</td>
<td>0.1°C</td>
</tr>
</tbody>
</table>

The accuracies and ranges are listed in Section 5.

Note

The following 3-1/2 digit mini RTD panel meters are available and discussed in this Operator’s Manual.

<table>
<thead>
<tr>
<th>MODEL TYPE</th>
<th>°C or °F</th>
<th>RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>305-MF1 RTD F</td>
<td>1.0°F</td>
<td></td>
</tr>
<tr>
<td>305-MF2 RTD F</td>
<td>0.1°F</td>
<td></td>
</tr>
<tr>
<td>305-MC1 RTD C</td>
<td>1.0°C</td>
<td></td>
</tr>
<tr>
<td>305-MC2 RTD C</td>
<td>0.1°C</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1-2

Power Options Available

<table>
<thead>
<tr>
<th>MODEL</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>305-Mxx-C0</td>
<td>115 Vac ±15%, 50/60 Hz</td>
</tr>
<tr>
<td>305-Mxx-C1</td>
<td>230 Vac ±15%, 50/60 Hz</td>
</tr>
<tr>
<td>305-Mxx-C2A</td>
<td>9-26 Vdc @ 110mA max.</td>
</tr>
<tr>
<td>305-Mxx-C5</td>
<td>100 Vac ±15%, 50/60 Hz</td>
</tr>
<tr>
<td>305-Mxx-C8</td>
<td>24 Vac ±15%, 50/60 Hz</td>
</tr>
</tbody>
</table>
TABLE 1-3

Other Models Available

The following 3-1/2 digit mini thermocouple panel thermometers are discussed in a separate manual.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>TYPE</th>
<th>°C or °F</th>
<th>RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>305-JF1</td>
<td>J</td>
<td>F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>305-JF2</td>
<td>J</td>
<td>F</td>
<td>0.1°F</td>
</tr>
<tr>
<td>305-JC1</td>
<td>J</td>
<td>C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>305-JC2</td>
<td>J</td>
<td>C</td>
<td>0.1°C</td>
</tr>
<tr>
<td>305-KF1</td>
<td>K</td>
<td>F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>305-KF2</td>
<td>K</td>
<td>F</td>
<td>0.1°F</td>
</tr>
<tr>
<td>305-KC1</td>
<td>K</td>
<td>C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>305-KC2</td>
<td>K</td>
<td>C</td>
<td>0.1°C</td>
</tr>
<tr>
<td>305-TF1</td>
<td>T</td>
<td>F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>305-TF2</td>
<td>T</td>
<td>F</td>
<td>0.1°F</td>
</tr>
<tr>
<td>305-TC1</td>
<td>T</td>
<td>C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>305-TC2</td>
<td>T</td>
<td>C</td>
<td>0.1°C</td>
</tr>
<tr>
<td>305-EF1</td>
<td>E</td>
<td>F</td>
<td>1.0°F</td>
</tr>
<tr>
<td>305-EF2</td>
<td>E</td>
<td>F</td>
<td>0.1°F</td>
</tr>
<tr>
<td>305-EC1</td>
<td>E</td>
<td>C</td>
<td>1.0°C</td>
</tr>
<tr>
<td>305-EC2</td>
<td>E</td>
<td>C</td>
<td>0.1°C</td>
</tr>
</tbody>
</table>
NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by these labels:

NOTE: provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: tells you about the risk of electric shock.

CAUTION, WARNING or IMPORTANT: tells you of circumstances or practices that can effect the meter's functionality and must refer to accompanying documents.
SECTION 1 INTRODUCTION

1.1 UNPACKING

Remove the Packing List and verify that all equipment has been received. If there are any questions about the shipment, use the phone number for the Customer Service Department nearest you.

Upon receipt of shipment, inspect the container and equipment for any signs of damage. Take particular note of any evidence of rough handling in transit. Immediately report any damage to the shipping agent.

The carrier will not honor any claims unless all shipping material is saved for their examination. After examining and removing contents, save packing material and carton in the event reshipment is necessary.

Verify that you received the following items in the shipping box:

QTY DESCRIPTION

1 Panel Thermometer with 3 small connectors plugged into the rear of the meter.

1 Operator’s Manual
1.2 SAFETY CONSIDERATIONS

This device is marked with the international caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

Unpacking & Inspection

Unpack the instrument and inspect for obvious shipping damage. Do not attempt to operate the unit if damage is found.

This instrument is a panel mount device protected in accordance with Class I of EN 61010 (115/230 AC power connections). Installation of this instrument should be done by Qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall not interrupt the Protective Conductor (Earth wire), and it shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the mains supply cord.

Furthermore, to provide protection against excessive energy being drawn from the mains supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

- The Protective Conductor must be connected for safety reasons. Check that the power cable has the proper Earth wire, and it is properly connected. It is not safe to operate this unit without the Protective Conductor Terminal connected.

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.
SECTION 2 ABOUT THE METER

2.1 Front of the Meter

Figure 2-1 shows the panel thermometer.

![Panel Thermometer](image)

Figure 2-1. Panel Thermometer

Features:
- Display: 3 1/2 Digit, 7-Segment Red or Green LED
- Full-size: 14.2 mm (0.56") LED Display
- Analog Output Standard
- 1/8 DIN Standard Panel Cutout
- Removable Screw-Clamp Cable Connector
- Display Hold Capability
2.2 Back of the Meter

Figure 2-2 illustrates the rear of the meter.

![Rear View Showing P1, P2, P3 Locations](image)

2.3 Connector Description

<table>
<thead>
<tr>
<th>Connector Description</th>
<th>Connector</th>
<th>PIN #</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AC) Earth Ground</td>
<td>P1</td>
<td>1</td>
</tr>
<tr>
<td>(AC) Neutral</td>
<td>P1</td>
<td>2</td>
</tr>
<tr>
<td>(AC) Line</td>
<td>P1</td>
<td>3</td>
</tr>
<tr>
<td>(DC) -DC Return</td>
<td>P1</td>
<td>1</td>
</tr>
<tr>
<td>(DC) +DC</td>
<td>P1</td>
<td>2</td>
</tr>
<tr>
<td>(DC) No Connection (Not used)</td>
<td>P1</td>
<td>3</td>
</tr>
<tr>
<td>Display Hold (Active Low)</td>
<td>P2</td>
<td>1</td>
</tr>
<tr>
<td>Analog Return</td>
<td>P2</td>
<td>2</td>
</tr>
<tr>
<td>Analog Output</td>
<td>P2</td>
<td>3</td>
</tr>
<tr>
<td>RTD Input† -EXC</td>
<td>P3</td>
<td>1</td>
</tr>
<tr>
<td>RTD Input† Signal Lo</td>
<td>P3</td>
<td>2</td>
</tr>
<tr>
<td>RTD Input† Signal Hi</td>
<td>P3</td>
<td>3</td>
</tr>
<tr>
<td>RTD Input† +EXC</td>
<td>P3</td>
<td>4</td>
</tr>
</tbody>
</table>

† For RTD input wires, refer to Figure 3-3 thru 3-6.
SECTION 3 GETTING STARTED

3.1 Main Board Power Jumpers

Caution: The meter has no power-on switch, so it will be in operation as soon you apply power.

The meter can be configured to operate on 115VAC or 230VAC by the proper combination of the soldered wire jumpers that are located on the printed circuit board. The meter is set at the factory to be powered by the voltage specified at the time of ordering. The same transformer is used for either configuration, so all you need to do is to select the jumpers as described in this section.

Important: These changes must be performed by a qualified technician.

To change the Factory preset jumpers, do the following steps:

1. Disconnect the power from the unit before proceeding.

2. Remove the main board from the case. Refer to Disassembly/Assembly Section 3.8.

3. Locate the solder jumpers W1, W2, and W3 (located near the edge of the main board alongside the transformer).

4. If your power requirement is 115 V ac, solder jumpers W1 and W3 should be wired, but jumper W2 should not. If your power requirement is 230 Vac, solder jumper W2 should be wired, but jumpers W1 and W3 should not.
Voltage Jumper Pin Settings

<table>
<thead>
<tr>
<th>AC VOLTAGE</th>
<th>INSTALL</th>
<th>REMOVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>115VAC</td>
<td>W1, W3</td>
<td>W2</td>
</tr>
<tr>
<td>230VAC</td>
<td>W2</td>
<td>W1, W3</td>
</tr>
</tbody>
</table>

Figure 3-1 shows the location of solder jumpers W1 through W3.

Figure 3-1. Power Jumper Locations
3.2 Changing the Meter Parameters

The proper combinations of jumper plugs S1, S2, S3, S4, and S5 inside the meter allow you to change various parameters of the meter. These parameters include resolution, range, units, RTD sensor configuration and sensor break configuration. You can change the parameters by moving the plugs on one or several of the jumper locations. Keep in mind that the meter is factory set for 3-wire RTD, and for the upscale position.

Figure 3-2 shows the location of the jumper plugs S1 through S5.
The following tables summarizes what parameters you can change.

TABLE 3-1 Range Parameters

<table>
<thead>
<tr>
<th>Option</th>
<th>F/C</th>
<th>Resolution</th>
<th>Range</th>
<th>S1</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>*-MF1</td>
<td>°F</td>
<td>1°</td>
<td>-328 to +1562°F</td>
<td></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>*-MF2</td>
<td>°F</td>
<td>0.1°</td>
<td>-199.9 to +199.9°F</td>
<td>C</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>*-MC1</td>
<td>°C</td>
<td>1°</td>
<td>-200 to +850°C</td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>*-MC2</td>
<td>°C</td>
<td>0.1°</td>
<td>-199.9 to +199.9°C</td>
<td>C</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

* Refer to Table 1-1, for complete models (preface section).

TABLE 3-2 2-, 3-, 4-Wire, Upscale, Downscale Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>S2</th>
<th>S3</th>
<th>Upscale (Default)</th>
<th>Downscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2- or 4-wire RTD</td>
<td>--</td>
<td>--</td>
<td>A, B, E, F</td>
<td>C, D, G, H</td>
</tr>
<tr>
<td>3-Wire RTD</td>
<td>A</td>
<td>I</td>
<td>A, B, E, F</td>
<td>C, D, G, H</td>
</tr>
</tbody>
</table>

3-Wire input connection is standard. For 2- or 4-Wire remove S2-A and S3-I.
Figure 3-3 gives an example of how to set S4 and S5 to configure a MF1 meter option. There is a jumper plug across A on S4 and another jumper plug across A on S5. B and C on S5 are not used.

![Diagram of S4 and S5 jumpers](image)

Figure 3-3. Example of How to Set Meter Option MF1 (jumpers S4 and S5)

SENSOR BREAK PROTECTION:

The proper combination of jumpers on S3 will determine the direction in which the display and analog output will go if the RTD sensor breaks (upscale or downscale). The meter is factory set to upscale break protection. If the sensor breaks, the display and analog signal will increment (upscale) and the 3 least significant digits will then go blank. If you require downscale break protection, refer to **Table 3-2** to change the S3 jumper configuration.
Section 3.3 Installation and Panel Mounting

Figure 3-4 shows the panel cutout dimensions, the dimensions for the panel thickness, and the backplate for mounting the unit in a panel. Connections will be done after mounting the unit.

1. Remove the 2 phillips screws from behind the display (you don't have to go inside the meter) holding the rectangular backplate to the meter. Remove the backplate and set aside.

2. Cut or punch a hole in the panel where you want the meter to go. The panel can be as thick as 0.25" (6.4mm) to as thin as 0.03" (0.8mm).

3. Insert the meter into the panel cutout.

4. From the rear of the panel, slide the backplate over the case (smooth side out).

5. Install the 2 phillips screws to secure the meter in 1/8 DIN mount. Center the meter in hole prior to tightening screws.
Figure 3-4. Installation Information

- **Panel Thickness**
 - Max: 0.25 [6.4]
 - Min: 0.03 [0.8]

- **1/8 DIN Panel Cutout**
 - R: 0.06 [1.5]
 - 4 PLCS
 - 1.772 +0.024/-0.000
 - [45.0 +0.61/-0.00]
 - 3.622 +0.032/-0.000
 - [92.00 +0.81/-0.00]

- **Components**
 - Meter
 - Bezel
 - Lens
 - Backplate
 - Screws

- **Panel with 1/8 DIN Cutout**
3.4 Sensor Input Connections

The RTD sensor (see Figure 3-5), can be wired in three different ways. They are 2-, 3-, and 4-wire configurations. The meter is factory set internally to a 3-wire setup. If you wish to change it, refer to Table 3-2.

2-Wire RTD:
Externally wire the P3 connector according to Figure 3-6. Keep in mind that you will need to jumper pins 1 and 2 on P3 together, and jumper pins 3 and 4 on P3 together. Use 24 AWG wire. The black lead goes to Pin 1 or 2 and the red lead goes to Pin 3 or 4.

3-Wire RTD:
Externally wire the P3 connector according to Figure 3-7. Pin 4 on the P3 connector is not used.

4-Wire RTD:
Externally wire the P3 connector according to Figure 3-8.

See Figure 2-2 for the location of the P3 connector.
3.4 Sensor Input Connections (Continued)

Refer to Table 3-1 and Table 3-2 for internal jumper settings.

* Wire colors are for OMEGA RTD wiring only.
3.5 Analog Output Connections

The analog output is a linearized millivolt signal that is equivalent to the displayed temperature. It comes as a standard feature with every unit. The resolution of the analog output is no greater than the resolution of the display.

Note The analog output is a non-isolated signal.

To access the analog signal, attach copper wire to the 3-pin female connector that is supplied with the meter. Refer to Figure 3-9 for wiring instructions. Plug the female connector into the P2 (male) connector at the rear of the meter.

Figure 2-2 shows the location of the P2 connector on the meter. Note that this connector shares a common return with the “Display Hold” function.

![Diagram of Analog Output Connections (P2)]
3.6 Display Hold Connections

The “Display Hold" function can be used to freeze the display. Connect a single pole, single throw (SPST) switch between pins 1 and 2 on the P2 connector. The display will stop updating when this switch is on. When this switch is off, the display will update itself 2.5 times per second.

To access the “Display Hold" function, attach copper wire to the 3-pin female connector that is supplied with the meter. Refer to Figure 3-10 for wiring instructions. This connector shares a common return with the Analog Output. Plug the female connector into the P2 connector at the rear of the meter.

Figure 2-2 shows the location of the P2 connector on the meter.

![Figure 3-10. Display Hold Connections]
3.7 Main Power Connections

Connect the ac main power connections as shown below.

WARNING: Do not connect ac power to your meter until you have completed all input and output connections. Failure to do so may result in injury! This device must only be installed electrically by specially trained electrician with corresponding qualifications. The main power input to the unit as well as the AC input signal to be measured must agree with the wiring instruction.

The meter is factory set to the power specified by the customer at the time of ordering. The voltage is printed on the Label under Input power.

Refer to **Section 3-2** to convert from one configuration to another.

To connect power to the unit, attach wires from the ~AC power cord to the orange 3-pin female connector that is supplied with the meter. Refer to **Figure 3-11** for wiring instructions. Plug the female connector into the orange P1 (male) connector at the rear of the meter.

Figure 2–2 shows the location of P1 on the meter.

![Figure 3-11. ~AC Connector Wiring (P1)](image-url)
DC WIRING

The meter can be configured at the factory to operate on a 9–26 VDC non-isolated power. The DC voltage option is specified at the time of ordering. See Table 1-3 for model number listing. An AC powered meter cannot be converted to a DC powered meter or vice versa.

To connect power to the unit, attach the DC power wires to the orange 3-pin female connector that is supplied with the meter. Refer to Figure 3-12 for wiring instructions. Plug the female connector into the orange P1 (male) connector at the rear of the meter.

Figure 2-2 shows the location of P1 on the meter.
3.8 Disassembly/Assembly

You must go through the following steps in order to remove the printed circuit board from the case if you want to change from 115VAC to 230VAC (or vice versa) or to change from Fahrenheit to Celsius (or vice versa). These changes must be performed by a qualified technician in order to avoid damage to the unit.

WARNING: Do not connect ac power to your meter until you have completed all input and output connections. Failure to do so may result in injury!

1. Remove power and all wire connections from the unit.
2. Unplug the three connectors (P1, P2, and P3) from the back of the meter. Grasp them firmly on the top and bottom of the connector and pull. **Figure 3-13** shows the location of the three connectors.
3. Remove the friction fit lens by prying down and forward from the top of the meter. Remove the mounting screws from the rear of the panel backplate. Slide the unit out of the panel (if it is installed in a panel).
4. The printed circuit board is held in place by a tab and notch system located next to the P1 connector, pin 1 (refer to **Figure 3-13**). The tab is on the case and the notch is on the edge of the PC Board. Hold the meter with the display facing away from you. Gently pry the tab (on the back corner of the case) out with the edge of your finger, while pushing the back of the PC Board out through the front of the meter. The PC Board will slide out the front, free from the case.
When re-installing the printed circuit board:

1. Hold the case (with the two mounting holes facing upwards and to the right side of the case) in the left hand.

2. Hold the printed circuit board with the components showing (soldered side down) in the right hand.

3. Slip the component board into the case and slide in as far as it will go. You will also have to release the tab at the rear on the other side of the case (turn case over) to allow the board to fit all the way inside the case.

4. Go through steps 3 thru 5 in Section 3.3 in order to re-install the backplate and screws, and also install the lens.
SECTION 4 OPERATION AND CALIBRATION

Important: These changes must be performed by a qualified technician.

WARNING: Do not connect ac power to your meter until you have completed all input and output connections. Failure to do so may result in injury!

1. Wire the meter according to the wiring section. This includes power, thermocouple and analog signal connections.

2. Apply power to the meter and the display will show the temperature of the probe.

The meter is shipped from the factory calibrated to the accuracy as specified. No re-calibration is necessary. In the event that there is a desire to check the calibration, the following procedure is given.

4.1 EQUIPMENT REQUIRED

- Meter
- a small screwdriver
- a precision resistance source in 0.01° resolution or “Decade Box".
4.2 CALIBRATION PROCEDURE

1. Remove the front lens. Connect power to the meter, observing proper wiring procedures.

2. Connect the precision resistance source to the P3 connector observing proper wiring configuration. For 3–wire connections, use pins 1, 2, 3, and 4. Refer to Figures 4-1 through 4-3.

3. Apply resistance input as indicated in Table 4-1.

4. Adjust either the ZERO or SPAN potentiometer as shown in Figure 4-4.

5. After adjusting the post, go back and verify both temperature readings. Repeat step 4 as required.

Refer to Table 3-1 and Table 3-2 for internal jumper settings.
TABLE 4-1

CALIBRATION VALUES WHEN YOU ARE USING RESISTANCE SOURCE

<table>
<thead>
<tr>
<th>MODEL OPTION</th>
<th>RESISTANCE READING</th>
<th>METER DISPLAY</th>
<th>POT TO ADJUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>*-MF1</td>
<td>93.01 375.51</td>
<td>00°F 1472°F</td>
<td>ZERO SPAN</td>
</tr>
<tr>
<td>*-MF2</td>
<td>93.01 134.70</td>
<td>00.0°F 194.0°F</td>
<td>ZERO SPAN</td>
</tr>
<tr>
<td>*-MC1</td>
<td>100 375.51</td>
<td>00°C 800°C</td>
<td>ZERO SPAN</td>
</tr>
<tr>
<td>*-MC2</td>
<td>100.0°C 174.0°C</td>
<td>00°C 195.0°C</td>
<td>ZERO SPAN</td>
</tr>
</tbody>
</table>

* Refer to Table 1-1, for complete models (preface section).
SECTION 5 SPECIFICATIONS

INPUT TYPE:

- **RTD:** 100-ohm platinum with alpha of 0.00385
- **Calibration:** IEC 751 (IPTS-68)
- **Configuration:** 2-, 3-, or 4-wire RTD connection
- **Polarity:** Bipolar
- **Zero:** Adjustable ±20°C (±36°F)
- **Zero Tempco †:** ±0.05 degree/degree
- **Sensor-wire Resistance Tempco † Effect per Conductor:**
 - 2-wire: 20 mdeg/Ω/degree, up to 3.8 Ω
 - 3-wire: 50µdeg/Ω/degree, up to 100 Ω
 - 4-wire: 5.0µdeg/Ω/degree, up to 100 Ω
- **Sensor-excitation Current:** 0.5 mA
- **Sensor-break Indication:** Meter displays overrange (three least significant digits blank)
- **Overvoltage Protection:** 25 Vp

NOISE REJECTION

- **NMR †, SIG HI to SIG LO:** 70 dB, 50/60 Hz
- **CMR †, Analog RTN to PWR GND:** 120 dB, DC to 60 Hz
- **CMV †, Analog RTN to PWR GND:** Dielectric strength to 1500 V transient per 260 Volt rms or DC working voltage.

ACCURACY at 25°C

- **Range for rated accuracy:**
 - **MC1/MF1:** -200° to +850°C (-328° to +1562°F)
 - Maximum Error: ±1.5°C (±2.7°F) ±1 count
 - **MC2/MF2:** -199.9° to +199.9°C (-199.9° to +199.9°F)
 - Maximum Error: ±0.5°C (±0.5°F) ±1 count
- **Resolution:** 0.1°C, 0.1°F, 1°C or 1°F (jumper-selectable)
- **Span Tempco †:** ±0.02% of reading/°C
- **Full-Scale Step Response:** 1 second
- **Warmup to Rated Accuracy:** 30 minutes

ANALOG OUTPUT (linearized)

- **Voltage:** 1mV/count
- **Calibration Error:**
 - **MC1/MF1:** ±1% of reading ± 1.5 mV on °C, ±2.7 mV on °F
 - **MC2/MF2:** ±1% of reading ± 0.5 mV
- **Source Resistance:** 100 Ω

ANALOG TO DIGITAL CONVERSION

- **Technique:** Dual-slope, average value
- **Signal Integration Period:** 100 ms
- **Read Rate:** 2.5/s
DISPLAY
Type: .. 7-segment, LED
Height: .. 0.56" (14.2 mm)
Symbols: .. -1.8.8.8
Overrange Indication: ... Three least-significant digits blank
Colors: .. Red - standard
Green - optional

DIGITAL INPUTS
Hold: .. TTL or 5V CMOS compatible

ENVIRONMENTAL
Operating Temperature: ... 0° to 60°C (32° to 140°F)
Storage Temperature: ... -40° to 85°C (-40° to 185°F)
Relative Humidity: .. 95% at 40°C (non-condensing)

MECHANICAL DIMENSIONS
Bezel: .. 01.89" x 3.78" (48 x 96 mm)
Depth Behind the Bezel: .. 4.32" (110 mm) w/ connectors
Panel Cutout: 1/8 DIN: 01.72" H x 3.62" W (45 x 92 mm)
Weight: .. 8 ounces (227 grams)
Panel Thickness minimum: 0.03" (0.76mm)
maximum: 0.25" (6.25mm)
Case Material: ... 94V-1 UL-rated thermoplastic

POWER
AC Frequency: .. 50/60 Hz
Max. Power: .. 2.4 watts max.
AC Voltage: .. 115Vac ±15% 25mA max.
230Vac ±15% 14mA max.
100Vac ±15% 30mA max.
24Vac ±15% 127mA max.
DC Voltage: .. 9-26 Vdc @ 110mA
External Fuse Protection needed: .. 32mA, 115Vac/230Vac
UL Slow-blow (per single unit)
40mA, 100Vac
160mA, 24Vac
125mA, 9-26Vdc
Installation Category: .. I per EN61010
Equipment Class: ... I per EN61010
Pollution Degree: ... 2 per EN61010
† Refer to the Glossary in Section 6.
Figure 5-1 Dimensions
SECTION 6 GLOSSARY

COMMON MODE REJECTION (CMR) - a measure of the affect of a voltage on the indicated display. It is the ratio of the common mode voltage to the measured voltage due to a common mode voltage.

COMMON MODE VOLTAGE (CMV) - the average of the voltage applied to both wires of a two wire or differential input.

NORMAL MODE REJECTION (NMR) - a measure of the rejection of unwanted signal due to a voltage applied between the wires of a two wire or differential input (shown as normal mode voltage). NMR is the ratio of the normal mode voltage to the measured voltage due to the normal mode voltage.

TEMPCO - abbreviation for temperature coefficient. It is the effect of changes in ambient temperature on a particular parameter, such as zero or span settings.