Additional products from

NEWPORT Electronics, Inc.

Counters Rate Meters
Frequency Meters Timers
PID Controllers Totalizers
Clock/Timers Strain Gauge Meters
Printers Voltmeters
Process Meters Multimeters
On/Off Controllers Soldering Iron Testers
Recorders pH pens
Relative Humidity pH Controllers
Transmitters pH Electrodes
Thermocouples RTDs
Thermistors Thermowells
Wire Flow Sensors

For Immediate Assistance
In the U.S.A. and Canada: 1-800-NEWPORT®
In Mexico: (95) 800-NEWPORT™
Or call your local NEWPORT Office.

NEWPORTnet™ On-Line Service Internet e-mail
http://www.newportUS.com info@newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.
TABLE OF CONTENTS

1.0 GENERAL INFORMATION
 1.1 Accuracy and Stability 1
 1.2 Adaptability/Turndown 1
 1.3 Linearity 1
 1.4 Electrical Isolation 2
 1.5 Shock Resistance 2
 1.6 Waterproof/RFI-Resistant Case 2
 1.7 Mounting Adaptability 2

2.0 SPECIFICATIONS
 2.1 Input 3
 2.2 Output 3
 2.3 Accuracy 4
 2.4 Environmental 4
 2.5 Mechanical 4

3.0 MECHANICAL ASSEMBLY AND INSTALLATION
 3.1 Safety Considerations 5
 3.2 Optical Adapters for Mounting 5
 3.3 Surface and TR2/2TK Relay Track Mounting 6
 3.4 DIN EN 50 022 Relay Track Mounting 6
 3.5 External Explosion-proof Housing Mounting 8

4.0 POWER AND SIGNAL INPUT CONNECTIONS 9

5.0 CALIBRATION
 5.1 Tools and Equipment 10
 5.2 Calibration Procedure 11
 5.3 Pin Assignments 15

6.0 DRAWINGS 18

APPENDICES

APPENDIX A TRANSMITTER ACCURACY SPECIFICATIONS 20
<table>
<thead>
<tr>
<th>FIGURE/TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1</td>
<td>Exploded View of Model 501</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Bulkhead and Track Mounting</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>DIN Track Mounting</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Spring Retainer for Explosion-proof Housing</td>
<td>8</td>
</tr>
<tr>
<td>Figure 4-1</td>
<td>Input Connections</td>
<td>9</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>Calibration Setup</td>
<td>10</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>Calibration Flowchart</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5-3</td>
<td>Jumper Diagram</td>
<td>15</td>
</tr>
<tr>
<td>Figure 6-1</td>
<td>501 Case Dimensions</td>
<td>18</td>
</tr>
<tr>
<td>Figure 6-2</td>
<td>501 Preamp Block Diagram</td>
<td>19</td>
</tr>
<tr>
<td>Figure 6-3</td>
<td>501 Postamp Block Diagram</td>
<td>19</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>DIN 43760 Pt-100 Resistance</td>
<td>14</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Span Ranges in Degrees Celsius Obtained with Jumpers</td>
<td>16</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>Span Ranges in Ohms Obtained with Jumpers</td>
<td>17</td>
</tr>
</tbody>
</table>
1.0 GENERAL INFORMATION

The 501 two-wire transmitter supplies a 200-microampere current to the Pt-100 RTD, gauges the resulting microvolts, and provides amplification and common-mode isolation, controlling the current drawn from a 9-to-50 V dc source to produce the 4-to-20 milliampere output signal.

Common-mode voltage between the input RTD and the output current circuit is tested at 1500 V rms. As much as 750 ohms dropping resistance may be used in the power leads of the 501 when the unit is energized from a 24 V dc source because of the small compliance voltage needed by the unit. Accidental overloads of over one minute by 120 V rms on the output leads do not damage the 501.

1.1 ACCURACY AND STABILITY

The 501 has tailored resistance values installed to provide low temperature coefficients and a high degree of lead-resistance-effect rejection in 3 (or 4) -wire configurations. Selected bridge resistors in a temperature-sensing bridge provide cancellation of Span temperature effects. High-ambient-temperature compensation points are checked. The unit is certified for accuracy from -40 to +85°C (-40 to +185°F).

1.2 ADAPTABILITY/TURNDOWN

The Span of the 501 can be ranged anywhere from 100 to 1050°C by selection of four jumper positions, with fine tuning provided by a multiturn, top-accessible potentiometer. Sixteen Zero steps, also provided by 501 jumpers, allow placement of the 4-mA output temperature anywhere from -200 to 750°C, with fine tuning provided by another top-accessible, multiturn potentiometer. This 501 turndown capability exceeds that of any other known RTD transmitter.

1.3 LINEARITY

The span and zero suppression capabilities (high turndown ratio) allow high-gain control for continuous processes and good linearity over narrow temperature ranges. Downstream linearization of the 4-20 mA signal is required for accurate absolute temperature readout over a wide span.
1.4 ELECTRICAL ISOLATION

501 input (2, 3 or 4-wire RTD) and output (DC power) barrier strips accept wires up to 2 mm diameter (13 gauge), and are mechanically isolated from each other to prevent input/output wiring contact during installation.

1.5 SHOCK RESISTANCE

Lightweight 501 circuit boards are formed into a rigid box structure and firmly soldered to the case top. The circuit-board box is doubly coated with RTV silicone for environmental protection. When installed in the rugged, die-cast case, the 501 can withstand the shock of a 6-foot drop onto a hard surface (although scarring of the case and/or deformation of the plastic cover can occur).

1.6 WATERPROOF/RFI-RESISTANT CASE

The 501 case is made from Zamac (zinc alloy), coated with polyurethane, and gasketed with fluorosilicone. Fluorosilicone plugs protect the top-access Span and Zero potentiometers.

1.7 MOUNTING ADAPTABILITY

The small size of the 501 (less than 75 mm or 3 in OD) permits mounting in small spaces, including explosion-proof housings for wiring compatibility with other equipment in hazardous environments. A bulkhead adaptor provides for wall-mounting. A snaptrack adaptor mounts on either American or European relay tracks. Tapped holes in the case rear provide for custom mounting on any surface, indoor or out. An optional opaque top cover shields the barrier strips from harsh environments.
2.0 SPECIFICATIONS

2.1 INPUT

Configuration Isolated input
Sensor types 2, 3 or 4-wire RTD probe or variable resistor (from 0 to 400 ohms, minimum span of 35 ohms)
Input current source 200 µA nominal
RTD lead resistance rejection 40 dB (balanced 3-wire)
Common mode voltage, input to case Test, 2100 V peak; IEC spacing for over 354 V peak
Common mode rejection, input to case 120 dB, dc to 60 Hz

2.2 OUTPUT

Linear range 4 to 20 mA dc
Compliance (supply-voltage range) 9 to 50 V dc
Overvoltage protection 120 V ac for 1 minute
Reverse polarity protection 400 V peak
Common mode voltage, output to case 1500 Vp (354 Vp per IEC spacing)
Common mode rejection, output to case 120 dB, dc to 60 Hz
2.3 ACCURACY

Hysteresis and repeatability Within ±0.2°C ±0.1% of span

Six month stability Within ±0.2°C ±0.2% of base temp

Power supply effect Within 0.01% of span/volt

Ambient temperature effect for 50°C change
 Zero error: Within ±0.5°C ±.2% of zero suppression
 Span error: Within 0.2% of span

Response Time (To 0.1% of step) Typical 200 ms

2.4 ENVIRONMENTAL

Operating temperature -40 to 85°C

Storage temperature -55 to 125°C

Humidity To 100% (splashproof)

Vibration 1.52 mm (.06 in) double amplitude, 10-80 Hz cycled

Shock 55g, half-sine, 9-13 msec duration, 6’ drop to hard surface

Watertight pressure limit 35 kPa (5 psi)

Mounting position Any

2.5 MECHANICAL

Case material Zamac (zinc alloy), polyurethane-coated, fluorosilicone-gasketed

Weight 380 g (13 oz)

Diameter 74 mm (2.9 in)

Height (including barriers) 52 mm (2.1 in)

Connections #6 screws with wire clamps
3.0 MECHANICAL ASSEMBLY AND INSTALLATION

3.1 SAFETY CONSIDERATIONS

This instrument complies with required safety regulations. To prevent electrical or fire hazard and ensure safe operation, please follow the guidelines below:

VISUAL INSPECTION: Do not attempt to operate the unit if damage exists.

POWER VOLTAGE: The power supply range should be 9 - 50 V dc.

POWER WIRING: This instrument has no power-on switch; it will be in operation as soon as the power supply is energized.

SIGNAL WIRING: Make signal connections before power is applied. If connection changes are required, first deenergize the power supply.

EXERCISE CAUTION: As with any electronic instrument, high voltage may exist when attempting to install, calibrate, or remove parts of the transmitter.

Figure 3-1 Exploded View of Model 501

The low voltage requirement of the 501 enables its use with a current-loop indicator (Newport Model 508 recommended). Tapped holes on the back of the case provide for custom mounting to a flat surface; flanges on the back of the case provide for standard 8TK2 relay track mounting. For flat surface mounting, use #6 hardware. For 8TK2 relay track mounting, simply push onto track.
3.2 OPTIONAL ADAPTERS FOR MOUNTING

The following optional adaptors provide various mounting choices:

a. Adaptor plate for either front-screw-entry surface mount, or TR2/2TK relay track mount (see Figure 3-2).

b. Rail clamp for DIN-EN-50 022 relay track mount (Figure 3-3).

c. Spring retainers for external 76.4 to 88.9 mm (3 to 3.5 in) explosion-proof housing mount (see Figure 3-4).

3.3 SURFACE AND TR2/2TK RELAY TRACK MOUNTING

1. Position plate for desired application.
2. Use #6 hardware to mount plate to back of 501 case.
3.4 DIN EN 50 022 RELAY TRACK MOUNTING

DIN TRACK MOUNTING: SHOWN FOR HORIZONTAL TRACK

DIN TRACK MOUNTING: SHOWN FOR VERTICAL TRACK

Figure 3-3 DIN Track Mounting

1. Position plate for desired track direction.
2. Use #8 flathead screws to mount plate to back of 501 case.
TOP VIEW OF EXPLOSION-PROOF HOUSING. UNIT AND HOUSING SHOWN FOR REFERENCE ONLY.

Figure 3-4 Spring Retainer for Explosion-Proof Housing

1. Position spring retainer across back of 501 case.
2. Use wire protector feet (4 provided with above option) to hold spring retainers in place.
4.0 POWER AND SIGNAL INPUT CONNECTIONS

TEST, + PWR, and – PWR screws accept 2 mm (13 gauge) or lighter wire. CASE GND is grounded to the case. Power input range is 9-50 V dc.

SCREW-TERMINAL PIN ASSIGNMENT AS SHOWN IN FIGURE 4-1

1 TEST
2 + POWER/OUTPUT
3 – POWER/OUTPUT
4 CASE GND

A +EXCITATION
B +SENSE (N/C)
C –SENSE
D –EXCITATION

The Test function is used to determine if the transmitter is working. Since the 501 is capable of outputting up to 30 mA, the voltmeter should be able to read a current output up to 30 mA (which is 300 mV).

Figure 4-1 Input Connections

Figure 4-1 illustrates three ways to perform wire hook-up. The current can be measured using the field voltmeter, a milliammeter, or a millivoltmeter shunted by a known resistor. All three are shown above.
5.0 CALIBRATION

The 501 is normally delivered configured for 4-20 mA = 0 - 850°C.

5.1 TOOLS AND EQUIPMENT

#1 Phillips screwdriver
Small flathead screwdriver for potentiometer adjustment
One 4 1/2 digital ammeter
Fixed or variable DC power supply or battery (range of 12-30 V dc)
Decade resistor box (Model 1433T General Radio or equivalent)

Figure 5-1 Calibration Setup
5.2 CALIBRATION PROCEDURE

1. Refer to Figure 5-1. Remove the four Phillips-head screws from the case top, and set aside the plastic barrier cover. Lift out the electronics assembly (attached to the case lid).

2. Setting aside the case and sealing gasket, pull out the two sealing plugs which cover the Span and Zero potentiometers (pots). Adjust the Span pot to about midway point. (For a 15-turn pot, adjust counter-clockwise approximately 20 turns to reach the farthest right possible. Then begin turning it clockwise 3 turns to engage and another 7.5 turns to reach midpoint.)

3. Attach the resistor box to the 501 between the + (EXCITATION) and – (EXCITATION) terminals (use the – SENSE lead for the 3-wire configuration). If a 3-wire configuration is not desired, – SENSE and – EXCITATION should be connected together at the terminal.

4. From the 501 output terminals, connect the + terminal to the + terminal of a 12 to 30 V dc power supply or battery and the – terminal to the + terminal of an ammeter. Close the 4-20 mA loop by connecting the – terminal of the ammeter to the – terminal of the power source.

5. Refer to Table 5-2 for temperature ranges or Table 5-3 for ohm ranges obtained with Zero and Span jumpers. Turn the 501 so that the jumper pin-forest is in view (Figure 5-3), and place the push-on jumpers in the positions chosen to yield the desired Zero and Span ranges.

NOTE: After jumper installation, reinstall the electronic assembly in the case for better calibration stability.

6. Turn on the power supply. Set the resistor box to the ohms corresponding to the desired LO temperature or ohms (Zero) from Table 5-1 or Table 5-3, and adjust the Zero pot for 4.00 mA output current.

7. Set the resistor box source to the ohms corresponding to the desired HI temperature or ohms from Table 5-1 or Table 5-3 and read the Temporary Output Current, designated TOC (normally not equal to 20 mA).

8. Calculate: \[16 \times \text{TOC} \div (\text{TOC} - 4) = \text{CFS} \text{ (Current Full Scale) milliamperes.} \]
 (Generally, CFS will also not be equal to 20.00 mA.)

9. Adjust the Span to display the CFS output on the milliammeter.

10. Now readjust the Zero so that the output reads 20.00 mA.

11. Set the resistor box back to LO temp ohms. If the output current is not 4.00 mA, retrim starting at Item 7, above.

12. When calibrated, turn off the power supply, remove wires, and replace pot sealing plugs. Using the four screws, secure the transmitter in the case with a firmly compressed (but not flattened) gasket for a good seal.
EXAMPLE FOR OHMS:

Ohms range: 200 ohms = 4 mA, 450 ohms = 20 mA

1. Calculate the Span. Span = ohms (20 mA) - ohms (4 mA)
 \[\text{Span} = 450 - 200 = 250 \text{ ohms} \]

2. Refer to the top row of Table 5-3 to find the proper Span jumper, in this case "E" and "H."

3. Using the column labeled "Min Res for 4 mA" in Table 5-3, find the required Zero jumpers for the selected Span. If the resistance corresponding to the 4 mA is between two Zero jumper readings, select the Zero jumper with the smaller reading, in this case "B" and "D." The additional Zero suppression will be obtained by the Zero pot.

Calibrate:

1. Set Span pot to about midpoint.
2. Set the resistor box resistance to 200 \(\Omega \).
3. Adjust the Zero pot to 4.00 mA.
4. Set the resistor box to 450 \(\Omega \).
5. Read the current designated TOC.
6. Calculate \[\text{CFS} = 16 \times \text{TOC} \div (\text{TOC} - 4) \text{ mA} \]
7. Adjust Span pot to obtain CFS.
8. Adjust the Zero pot to obtain 20.00 mA current.
9. Set resistor box resistance to 200 \(\Omega \).
10. If the output is not 4.00 mA, readjust the Zero pot.
11. Set the resistor box to 450 \(\Omega \).
12. If the output is not 20.00 mA, readjust the Span pot.
13. Repeat steps 9 through 12 until 4.00 and 20.00 mA are obtained for the corresponding 200 and 450 \(\Omega \).

NOTE: Steps 1 through 8 are optional as they are meant to reduce calibration time by calculating the offset caused by the interaction between the Zero and Span pot.

EXAMPLE FOR TEMPERATURE:

Temperature Range = -200 to 400°C
Base Temperature = -200°C
Top Temperature = 400°C

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Zero Jumper</th>
<th>Table 5-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200 to 400°C</td>
<td>None</td>
<td>Table 5-2</td>
</tr>
<tr>
<td>Base Temperature</td>
<td>Span Jumper</td>
<td>EH</td>
</tr>
<tr>
<td></td>
<td>Base Temp</td>
<td>Table 5-1</td>
</tr>
<tr>
<td></td>
<td>Top Temp (Max)</td>
<td>247.04</td>
</tr>
</tbody>
</table>

Calibrate:

1. Set Span pot to about midpoint.
2. Set resistor box resistance to 18.49 \(\Omega \).
3. Adjust Zero pot to 4.00 mA.
4. Set resistor box resistance to 247.04 \(\Omega \).
5. Read current, designated TOC.
6. Calculate \[\text{CFS} = 16 \times \text{TOC} \div (\text{TOC} - 4) \text{ mA} \]
7. Adjust Span pot to obtain CFS.
8. Adjust Zero pot to obtain 20.00 mA current.
9. Set test resistance to 18.49 \(\Omega \).
10. If the output is not 4.00 mA, retrim starting at Item 2 above.

NOTE: For specific values not given in Table 5-1, interpolation may be used.
Remove Cover
Initial Setup

Determine (ω) for 4 mA output
Determine (ω) for 20 mA output

Apply Lo Ohms
Adjust Zero pot for a
4 mA Output Current

Apply Hi Ohms
Note Temporary Output Current (TOC)

Calculate the
Current Full Scale (CFS)

Adjust the Span for the
Temporary Output Current (TOC)

Readjust the Zero pot for a
20 mA output current

Apply Lo Ohms
Check for a 4 mA output current

Is the output current 4 mA?

No

Yes

DONE

Figure 5-2 Calibration Flowchart
<table>
<thead>
<tr>
<th>°C</th>
<th>Ohms</th>
<th>°C</th>
<th>Ohms</th>
<th>°C</th>
<th>Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200</td>
<td>18.49</td>
<td>150</td>
<td>157.31</td>
<td>500</td>
<td>269.90</td>
</tr>
<tr>
<td>-190</td>
<td>22.80</td>
<td>160</td>
<td>161.04</td>
<td>510</td>
<td>284.22</td>
</tr>
<tr>
<td>-180</td>
<td>27.08</td>
<td>170</td>
<td>164.76</td>
<td>520</td>
<td>287.53</td>
</tr>
<tr>
<td>-170</td>
<td>31.32</td>
<td>180</td>
<td>168.46</td>
<td>530</td>
<td>290.83</td>
</tr>
<tr>
<td>-160</td>
<td>35.53</td>
<td>190</td>
<td>172.16</td>
<td>540</td>
<td>294.11</td>
</tr>
<tr>
<td>-150</td>
<td>39.71</td>
<td>200</td>
<td>175.84</td>
<td>550</td>
<td>297.39</td>
</tr>
<tr>
<td>-140</td>
<td>43.87</td>
<td>210</td>
<td>179.51</td>
<td>560</td>
<td>300.65</td>
</tr>
<tr>
<td>-130</td>
<td>48.00</td>
<td>220</td>
<td>183.17</td>
<td>570</td>
<td>303.91</td>
</tr>
<tr>
<td>-120</td>
<td>52.11</td>
<td>230</td>
<td>186.82</td>
<td>580</td>
<td>307.15</td>
</tr>
<tr>
<td>-110</td>
<td>56.19</td>
<td>240</td>
<td>190.45</td>
<td>590</td>
<td>310.38</td>
</tr>
<tr>
<td>-100</td>
<td>60.25</td>
<td>250</td>
<td>194.07</td>
<td>600</td>
<td>313.59</td>
</tr>
<tr>
<td>-90</td>
<td>64.30</td>
<td>260</td>
<td>197.69</td>
<td>610</td>
<td>316.80</td>
</tr>
<tr>
<td>-80</td>
<td>68.33</td>
<td>270</td>
<td>201.29</td>
<td>620</td>
<td>319.99</td>
</tr>
<tr>
<td>-70</td>
<td>72.33</td>
<td>280</td>
<td>204.88</td>
<td>630</td>
<td>323.18</td>
</tr>
<tr>
<td>-60</td>
<td>76.33</td>
<td>290</td>
<td>208.45</td>
<td>640</td>
<td>326.35</td>
</tr>
<tr>
<td>-50</td>
<td>80.31</td>
<td>300</td>
<td>212.02</td>
<td>650</td>
<td>329.51</td>
</tr>
<tr>
<td>-40</td>
<td>84.27</td>
<td>310</td>
<td>215.57</td>
<td>660</td>
<td>332.66</td>
</tr>
<tr>
<td>-30</td>
<td>88.22</td>
<td>320</td>
<td>219.12</td>
<td>670</td>
<td>335.79</td>
</tr>
<tr>
<td>-20</td>
<td>92.16</td>
<td>330</td>
<td>222.65</td>
<td>680</td>
<td>338.92</td>
</tr>
<tr>
<td>-10</td>
<td>96.09</td>
<td>340</td>
<td>226.17</td>
<td>690</td>
<td>342.03</td>
</tr>
<tr>
<td>0</td>
<td>100.00</td>
<td>350</td>
<td>229.67</td>
<td>700</td>
<td>345.13</td>
</tr>
<tr>
<td>10</td>
<td>103.90</td>
<td>360</td>
<td>233.17</td>
<td>710</td>
<td>348.22</td>
</tr>
<tr>
<td>20</td>
<td>107.79</td>
<td>370</td>
<td>236.65</td>
<td>720</td>
<td>351.30</td>
</tr>
<tr>
<td>30</td>
<td>111.67</td>
<td>380</td>
<td>240.13</td>
<td>730</td>
<td>354.37</td>
</tr>
<tr>
<td>40</td>
<td>115.54</td>
<td>390</td>
<td>243.59</td>
<td>740</td>
<td>357.42</td>
</tr>
<tr>
<td>50</td>
<td>119.40</td>
<td>400</td>
<td>247.04</td>
<td>750</td>
<td>360.47</td>
</tr>
<tr>
<td>60</td>
<td>123.24</td>
<td>410</td>
<td>250.48</td>
<td>760</td>
<td>363.50</td>
</tr>
<tr>
<td>70</td>
<td>127.07</td>
<td>420</td>
<td>253.90</td>
<td>770</td>
<td>366.52</td>
</tr>
<tr>
<td>80</td>
<td>130.89</td>
<td>430</td>
<td>257.32</td>
<td>780</td>
<td>369.53</td>
</tr>
<tr>
<td>90</td>
<td>134.70</td>
<td>440</td>
<td>260.72</td>
<td>790</td>
<td>372.52</td>
</tr>
<tr>
<td>100</td>
<td>138.50</td>
<td>450</td>
<td>264.11</td>
<td>800</td>
<td>375.51</td>
</tr>
<tr>
<td>110</td>
<td>142.29</td>
<td>460</td>
<td>267.49</td>
<td>810</td>
<td>378.48</td>
</tr>
<tr>
<td>120</td>
<td>146.06</td>
<td>470</td>
<td>270.86</td>
<td>820</td>
<td>381.45</td>
</tr>
<tr>
<td>130</td>
<td>149.82</td>
<td>480</td>
<td>274.22</td>
<td>830</td>
<td>384.40</td>
</tr>
<tr>
<td>140</td>
<td>153.58</td>
<td>490</td>
<td>277.56</td>
<td>840</td>
<td>387.34</td>
</tr>
</tbody>
</table>

Table 5-1 DIN 43760 Pt-100 Resistance

10750ML-02 14
5.3 PIN ASSIGNMENTS (Jumper Pin-forest P1)

Figure 5-3 Jumper Diagram

NOTE: Always install 2 span jumpers.

<table>
<thead>
<tr>
<th>Jumper Function</th>
<th>P1 Pins Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>'A' Zero</td>
<td>1 and 2</td>
</tr>
<tr>
<td>'B' Zero</td>
<td>3 and 4</td>
</tr>
<tr>
<td>'C' Zero</td>
<td>5 and 6</td>
</tr>
<tr>
<td>'D' Zero</td>
<td>7 and 8</td>
</tr>
<tr>
<td>'E' Span</td>
<td>11 and 12</td>
</tr>
<tr>
<td>'F' Span</td>
<td>9 and 11</td>
</tr>
<tr>
<td>'G' Span</td>
<td>13 and 14</td>
</tr>
<tr>
<td>'H' Span</td>
<td>14 and 16</td>
</tr>
</tbody>
</table>

NOTE: P1 connector pins 10, 15, 17, 18, 19, and 29 are used solely for computerized testing by the factory.
<table>
<thead>
<tr>
<th>Zero Jumper</th>
<th>Span Jumper F,H 100 to 300°C Span</th>
<th>Span Jumper F,G 300 to 500°C Span</th>
<th>Span Jumper E,H 600 to 800°C Span</th>
<th>Span Jumper E,G 800 to 1050°C Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Temp</td>
<td>Min Temp</td>
<td>Max Temp</td>
<td>Base Temp</td>
</tr>
<tr>
<td>No Z-Jumper</td>
<td>-200</td>
<td>-135</td>
<td>100</td>
<td>-200</td>
</tr>
<tr>
<td>D</td>
<td>-170</td>
<td>-105</td>
<td>130</td>
<td>-125</td>
</tr>
<tr>
<td>C</td>
<td>-65</td>
<td>5</td>
<td>245</td>
<td>-15</td>
</tr>
<tr>
<td>CD</td>
<td>35</td>
<td>105</td>
<td>355</td>
<td>85</td>
</tr>
<tr>
<td>B D</td>
<td>130</td>
<td>205</td>
<td>460</td>
<td>180</td>
</tr>
<tr>
<td>BC</td>
<td>220</td>
<td>295</td>
<td>565</td>
<td>270</td>
</tr>
<tr>
<td>BCD</td>
<td>305</td>
<td>380</td>
<td>660</td>
<td>360</td>
</tr>
<tr>
<td>A</td>
<td>385</td>
<td>465</td>
<td>750</td>
<td>440</td>
</tr>
<tr>
<td>A D</td>
<td>465</td>
<td>545</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>A C</td>
<td>540</td>
<td>625</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>A CD</td>
<td>610</td>
<td>695</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>680</td>
<td>770</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>AB D</td>
<td>745</td>
<td>835</td>
<td>850</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-2 Span Ranges in Degrees Celsius Obtained with Jumpers

NOTE: The 501 has a slight variation in the input offset of the opamp. If the selected range cannot be obtained with the jumpers designated in Table 5-1, move to the previous or next jumper and range selection.

NOTE: Store the unused jumpers between the bottom connector pins and the printed-circuit board as shown in Figure 5-3.
<table>
<thead>
<tr>
<th>Zero Jumper</th>
<th>Span Jumper F,H
24 to 115 Ω Span</th>
<th>Span Jumper F,G
116 to 208 Ω Span</th>
<th>Span Jumper E,H
209 to 301 Ω Span</th>
<th>Span Jumper E,G
301 to 393 Ω Span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min* Res for 4 mA</td>
<td>Min Res for 20 mA</td>
<td>Max Res for 20 mA</td>
<td>Min* Res for 4 mA</td>
</tr>
<tr>
<td>No Z-Jumper</td>
<td>0</td>
<td>116</td>
<td>208</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>24</td>
<td>115</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>64</td>
<td>155</td>
<td>59</td>
</tr>
<tr>
<td>CD</td>
<td>83</td>
<td>107</td>
<td>198</td>
<td>102</td>
</tr>
<tr>
<td>B</td>
<td>123</td>
<td>147</td>
<td>238</td>
<td>142</td>
</tr>
<tr>
<td>B D</td>
<td>160</td>
<td>184</td>
<td>275</td>
<td>178</td>
</tr>
<tr>
<td>BC</td>
<td>192</td>
<td>216</td>
<td>307</td>
<td>211</td>
</tr>
<tr>
<td>BCD</td>
<td>223</td>
<td>247</td>
<td>338</td>
<td>242</td>
</tr>
<tr>
<td>A</td>
<td>252</td>
<td>276</td>
<td>367</td>
<td>270</td>
</tr>
<tr>
<td>A D</td>
<td>278</td>
<td>302</td>
<td>393</td>
<td>297</td>
</tr>
<tr>
<td>A C</td>
<td>303</td>
<td>327</td>
<td>418</td>
<td>321</td>
</tr>
<tr>
<td>A CD</td>
<td>325</td>
<td>349</td>
<td>440</td>
<td>344</td>
</tr>
<tr>
<td>AB</td>
<td>347</td>
<td>371</td>
<td>462</td>
<td>366</td>
</tr>
<tr>
<td>AB D</td>
<td>367</td>
<td>391</td>
<td>482</td>
<td>386</td>
</tr>
<tr>
<td>ABC</td>
<td>386</td>
<td>410</td>
<td>501</td>
<td>405</td>
</tr>
<tr>
<td>ABCD</td>
<td>404</td>
<td>428</td>
<td>519</td>
<td>423</td>
</tr>
</tbody>
</table>

* Maximum for 4 mA is the minimum for the next higher range.

Table 5-3 Span Ranges in Ohms Obtained with Jumpers

NOTE: The 501 has a slight variation in the input offset of the opamp. If the selected range cannot be obtained with the jumpers designated in Table 5-1, move to the previous or next jumper and range selection.

NOTE: Store the unused jumpers between the bottom connector pins and the printed-circuit board as shown in Figure 5-3.
Figure 6-1 501 Case Dimensions
Figure 6-2 501 Preamp Block Diagram

Figure 6-3 501 Postamp Block Diagram
The complex current-transmitter circuitry necessary to amplify, isolate, protect, and offset weak input signals while consuming only small amounts of power can distort the signal in many ways. Additional accuracy limitations occur in RTD transmitters, which require precise excitation, lead-resistance-effect cancellation and large zero-suppression ranges in order to obtain good sensitivity and linearity for high temperatures.

Many transmitter data sheets omit key accuracy factors and/or express performance in percentage values without mentioning the full-scale value. Design limitations can be disguised by such "specsmanship"; the 501 specifications, however, are detailed in order to present the complete performance accuracy.

Input errors are logically expressed in degrees (rather than ohms), and output errors are readily expressed in microamperes, since output is current. Transmitter users are rarely interested in microamperes, however, so these output current errors are translated back to input degrees as a percentage (or ppm) of the selected Span.

Another fundamental division of errors is that of independence or dependence on Zero and Reading. Resistor aging and tempco mismatch in the Zero and Voltage Reference circuits will produce errors which increase with Zero suppression but which are independent of the amount of Reading (value above the Zero). Resistor aging and tempco mismatch in the amplifier gain (feedback) circuits will usually affect both Zero and Reading accuracy; amplifier gain tempco variations are important to just the Reading stability. A complete error specification needs a term proportional to Zero (suppression) and a term proportional to Reading.

For RTD transmitters, the excitation current and amplifier offset tempscos are never precisely zero, even when factory-tailored over wide ambient excursions with curvilinear adjustments, as in the 501. This error component is readily stated as a percentage of the ambient temperature excursion from the nominal temperature at which the Zero was set (assuming, as in the 501, that the Zero potentiometer has ample resolution on all Zero and Span ranges). For transmitters with restricted turndown ratios (low zero-suppression capability), the tempco errors may be lumped into a single error term.

In addition to these three components of tempco (ambient temperature effects), there are other possible errors, often referred to as "time," "hysteresis," "repeatability," or "drift" errors. No statistically-significant errors of these types have yet been observed for the 501, which utilizes a solid-state, band-gap input voltage reference, matched-pair input PNP transistors, integrated-circuit current source and zero tempco control, and matched-tempco bridge resistors. The 501 also provides a variable-tempco output adjustment (factory-set) which eliminates many of the errors lumped in this category for other units. Its specification includes a 0.2°C tolerance for the calibration accuracies.
Warranty/Disclaimer

NEWPORT ELECTRONICS, INC. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from date of purchase. In addition to NEWPORT’s standard warranty period, NEWPORT ELECTRONICS will extend the warranty period for one (1) additional year if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR **WARRANTY** RETURNS, please have the following information available BEFORE contacting NEWPORT:
1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR **NON-WARRANTY** REPAIRS, consult NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:
1. P.O. number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

NEWPORT is a registered trademark of NEWPORT ELECTRONICS, INC.

© Copyright 2005 NEWPORT ELECTRONICS, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT ELECTRONICS, INC.
For immediate technical or application assistance please call:

1-800-639-7678®
1-800-NEWPORT

Newport Electronics, Inc.
2229 South Yale Street • Santa Ana, CA • 92704 • U.S.A.
TEL: (714) 540-4914 • FAX: (203) 968-7311
Toll Free: 1-800-639-7678 • www.newportUS.com • e-mail: info@newportUS.com
ISO 9001 Certified

Newport Technologies, Inc.
976 Bergar • Laval (Quebec) • H7L 5A1 • Canada
TEL: (514) 335-3183 • FAX: (514) 856-6886
Toll Free: 1-800-639-7678 • www.newport.ca • e-mail: info@newport.ca

Newport Electronics, Ltd.
One Omega Drive • River Bend Technology Centre
Northbank, Irlam • Manchester M44 5BD • United Kingdom
Tel: +44 161 777 6611 • FAX: +44 161 777 6622
Toll Free: 0800 488 488 • www.newportuk.co.uk • e-mail: sales@newportuk.co.uk

Newport Electronics B.V.
Postbus 8034 • 1180 LA Amstelveen • The Netherlands
TEL: +31 20 3472121 • FAX: +31 20 6434643
Toll Free: 0800 0993344 • www.newport.nl • e-mail: info@newport.nl

Newport Electronics spol s.r.o.
Frýstekova 184, 733 01 Karviná • Czech Republic
TEL: +420 59 6311899 • FAX: +420 59 6311114
Toll Free: 0800-1-66342 • www.newport.cz • e-mail: info@newport.cz

Newport Electronics GmbH
Daimlerstrasse 26 • D-75392 Deckenpfronn • Germany
TEL: 49 7056 9398-0 • FAX: 49 7056 9398-29
Toll Free: 0800 / 6397678 • www.newport.de • e-mail: sales@newport.de

Newport Electronique S.A.R.L.
11, rue Jacques Cartier • 78280 Guyancourt • France
TEL: +33 1 61 37 29 00 • FAX: +33 1 30 57 54 27
Toll Free: 0800 466 342 • www.newport.fr • e-mail: sales@newport.fr

Mexico and Latin America
FAX: 001 (203) 359-7807
En Español: 001 (203) 359-7803

NEWPORTnet™ On-Line Service
www.newportUS.com

Internet e-mail
info@newportUS.com

© NEWPORT Electronics, Inc.

0905 10750ML-02 Rev B