iSeries

iLD Big Display
Universal Temperature & Process Monitor
Operator’s Manual
Additional products from NEWPORT Electronics, Inc.

<table>
<thead>
<tr>
<th>Counters</th>
<th>Rate Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Meters</td>
<td>Timers</td>
</tr>
<tr>
<td>PID Controllers</td>
<td>Totalizers</td>
</tr>
<tr>
<td>Clock/Timers</td>
<td>Strain Gauge Meters</td>
</tr>
<tr>
<td>Printers</td>
<td>Voltmeters</td>
</tr>
<tr>
<td>Process Meters</td>
<td>Multimeters</td>
</tr>
<tr>
<td>On/Off Controllers</td>
<td>Soldering Iron Testers</td>
</tr>
<tr>
<td>Recorders</td>
<td>pH pens</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>pH Controllers</td>
</tr>
<tr>
<td>Transmitters</td>
<td>pH Electrodes</td>
</tr>
<tr>
<td>Thermocouples</td>
<td>RTDs</td>
</tr>
<tr>
<td>Thermistors</td>
<td>Thermowells</td>
</tr>
<tr>
<td>Wire</td>
<td>Flow Sensors</td>
</tr>
</tbody>
</table>

For Immediate Assistance
In the U.S.A. and Canada: 1-800-NEWPORT®
In Mexico: (95) 800-NEWPORT™
Or call your local NEWPORT Office.

NEWPORTnet™ On-Line Service
www.newportUS.com

Internet e-mail
info@newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

TRADEMARK NOTICE: NEWPORT, newportUS.com, and NEWPORT® are trademarks of NEWPORT Electronics, Inc.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577; 6,243,021 / CANADA 2052599; 2052600/ ITALY 1249456; 1250938 / FRANCE BREVET No. 91 12756 / SPAIN 2039150; 2048066 / UK PATENT No. GB2 249 837; GB2 248 954 / GERMANY DE 41 34398 C2. The ™ is a trademark of OMEGA Engineering, Inc. Used Under License. Other US and International Patents pending or applied for.

⚠️ This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.
TABLE OF CONTENTS

Part 1: Introduction .. 2
1.1 Description ... 2
1.2 Safety Considerations .. 3
1.3 Before You Begin .. 4

Part 2: Setup .. 5
2.1 Mounting .. 5
2.2 Rear Panel Connections .. 7
2.3 Electrical Installation .. 8
2.3.1 Power Connections .. 8
2.3.2 Thermocouple - Input Connection ... 9
2.3.3 Two / Three / Four Wire RTD-Hookups .. 10
2.3.4 Process Current - Wiring Hookup ... 11
2.3.5 Process Voltage - Wiring Hookup ... 11
2.3.6 Communication Output - Wiring Hookup ... 12

Part 3: Operation: Configuration Mode .. 13
3.1 Introduction ... 13
 Turning your Instrument On for the First Time
 Buttons Functions in Configuration Mode
3.2 Menu Configuration .. 14
3.2.1 ID Number ... 15
3.2.2 Setpoints .. 16
3.2.3 Configuration Menu ... 17
3.2.4 Input Type Menu .. 17
 Input Type (Thermocouple) .. 18
 Input Type (RTD) ... 19
 Input Type (Process) ... 20
3.2.5 Reading Configuration Menu ... 20
3.2.6 Alarm 1 Menu ... 24
3.2.7 Alarm 2 Menu ... 28
3.2.8 Reading Adjust Menu .. 29
3.2.9 Setpoint Deviation Menu / Field Calibration .. 30
3.2.10 ID Code Menu .. 31
3.2.11 Communication (Options) Menu ... 33
3.2.12 Display Color Selection Menu .. 39

Part 4: Specifications .. 42

Part 5: Factory Preset Values .. 45

CE APPROVAL INFORMATION .. 46
LIST OF FIGURES:

Figure 2.1 Mounting ...5
Figure 2.2 Rear Panel Power Connector Labels ..7
Figure 2.3 Rear Panel Input Connector Labels ..7
Figure 2.4 Main Power Connections ..8
Figure 2.5 Inside Cover Rear View ..8
Figure 2.6 Thermocouple Wiring Hookup ..9
Figure 2.7 Two/Three/Four-wire RTD
 a) RTD-1000 ohm and 500 ohm Wiring Hookup ..10
 b) RTD-100 ohm Wiring Hookup ..10
Figure 2.8 Process Current Wiring Hookup
 (Internal and External Excitation) ..11
Figure 2.9 Process Voltage Wiring Hookup
 a) Without Sensor Excitation ...11
 b) With Sensor Excitation ...11
Figure 2.10 Communication Output:
 a) RS-232 Output – Wiring Hookup ...12
 b) RS-485 Output – Wiring Hookup ...12
Figure 3.1 Flow Chart for ID and Setpoints ..14
Figure 3.2 Flow Chart for Configuration Menu ..17
Figure 3.3 Flow Chart for Input Type Menu ...17
Figure 3.4 Flow Chart for Reading Configuration ..20
Figure 3.5 Flow Chart for Alarm 1 ...24
Figure 3.6 Flow Chart for Alarm 2 ...28
Figure 3.7 Flow Chart for Reading Adjust Menu ..29
Figure 3.8 Flow Chart for Setpoint Deviation Menu / Field Calibration30
Figure 3.9 Flow Chart for ID Code ..31
Figure 3.10 Flow Chart for Communication Option ...33
Figure 3.11 Flow Chart for Display Color Selection ...39

LIST OF TABLES:

Table 2.1 Front Panel Annunciators ...6
Table 2.2 Rear Panel Connector ...7
Table 2.3 TC Wire Color Chart ...9
Table 3.1 Button Function in Configuration Mode ..13
Table 3.2 Conversion Table ...23
Table 4.1 Input Properties ..44
Table 5.1 Factory Preset Values ...45
NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by following labels:

• NOTE
• WARNING or CAUTION
• IMPORTANT
• TIP

NOTE: Provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: Tells you about the risk of electrical shock.

CAUTION, WARNING or IMPORTANT: Tells you of circumstances or practices that can effect the instrument’s functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.
PART 1
INTRODUCTION
1.1 Description

This device can be purchased as monitor (read process value only) or as a controller.

- The iLD Big Display monitor offers unparalleled flexibility in process measurement. Each unit allows the user to select the input type, from 10 thermocouple types (J, K, T, E, R, S, B, C, N and J DIN), Pt RTDs (100, 500 or 1000 Ω, with either 385 or 392 curve), DC voltage, or DC current. The voltage/current inputs are fully scalable to virtually all engineering units, with selectable decimal point, perfect for use with pressure, flow or other process input.

- The iLD Big Display device features a large, three color programmable display with capability to change a color every time the Alarm is triggered. Options include programmable RS-232 or RS-485 serial communication and excitation. Universal power supply accepts 100 to 240 Vac.
1.2 Safety Considerations

This device is marked with the international caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

This instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safety requirements for electrical equipment for measurement, control and laboratory. Installation of this instrument should be done by qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the main supply cord.

Furthermore, to provide protection against excessive energy being drawn from the main supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

Note:

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!
1.3 Before You Begin

Inspecting Your Shipment:

Remove the packing slip and verify that you have received everything listed. Inspect the container and equipment for signs of damage as soon as you receive the shipment. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent. The carrier will not honor damage claims unless all shipping material is saved for inspection. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

Customer Service:

If you need assistance, please call the nearest Customer Service Department, listed in this manual.

Manuals, Software:

The latest Operation and Communication Manual as well as free configuration software and ActiveX controls are available from the website listed in this manual or on the CD-ROM enclosed with your shipment.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

If you have the Serial Communications/Ethernet Option you can easily configure the controller on your computer or on-line.

To Disable Outputs:

Standby Mode is useful during setup of the instrument or when maintenance of the system is necessary. When the instrument is in standby, it remains in the ready condition but all outputs are disabled. This allows the system to remain powered and ready to go.

When the instrument is in "RUN" Mode, push \textbf{twice} to disable all outputs and alarms. It is now in "STANDBY" Mode. Push \textbf{once} more to resume "RUN" Mode.

\textbf{PUSH} \textbf{TWICE} to disable the system during an \textbf{EMERGENCY}.

To Reset the Meter:

When the controller is in the "MENU" Mode, push \textbf{once} to direct controller one step backward of the top menu item.

Push \textbf{twice} to reset controller, prior to resuming "Run" Mode except after "Alarms", that will go to the "Run" Mode without resetting the controller.
PART 2
SETUP
2.1 Mounting

NOTE: The display will be NEMA4 rated when Bail Mounted and appropriate liquid proof fittings are used, such as Heyco or Sealcon. When Panel Mounted, the display will be NEMA4 rated only from the front.

Figure 2.1 Mounting
Mounting iLD Big Display Through Panel:
1. Using the panel cutout diagram shown in your Quick Start manual, cut an opening in the panel.
2. Remove six (or eight) screws at the back of iLD Big Display to remove back cover.
3. Insert the unit into the opening from the front of the panel so the gasket seals between the bezel and the front of the panel.
4. Pass all wiring through customer drilled holes in back cover and connect wiring to terminal blocks.
5. Align back cover to iLD Big Display and reinstall screws.

Mounting iLD Big Display on Bail:
1. Remove six (or eight) screws at the back of iLD Big Display to remove back cover.
2. Pass all wiring through customer drilled holes in back cover and connect wiring to terminal blocks.
3. Align back cover to iLD Big Display and reinstall screws.
4. Mark the location of mounting screws on the flat surface.
5. Be sure to leave enough room around the bail to allow for removal and rotation of the display.
6. The display can be rotated for the best viewing angle.

Table 2.1 Front Panel Annunciators

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output 1/Setpoint 1/Alarm 1 indicator</td>
</tr>
<tr>
<td>2</td>
<td>Output 2/Setpoint 2/Alarm 2 indicator</td>
</tr>
<tr>
<td>°C</td>
<td>°C unit indicator</td>
</tr>
<tr>
<td>°F</td>
<td>°F unit indicator</td>
</tr>
<tr>
<td></td>
<td>Changes display to Configuration Mode and advances through menu items*</td>
</tr>
<tr>
<td></td>
<td>Used in Program Mode and Peak Recall*</td>
</tr>
<tr>
<td></td>
<td>Used in Program Mode and Valley Recall*</td>
</tr>
<tr>
<td></td>
<td>Accesses submenus in Configuration Mode and stores selected values*</td>
</tr>
</tbody>
</table>

* See Part 3 Operation: Configuration Mode
2.2 Rear Panel Connections

The rear panel connections are shown in Figures 2.2 and 2.3.

Figure 2.2 Rear Panel Power Connections

Figure 2.3 Rear Panel Input Connections

Table 2.2 Rear Panel Connector

<table>
<thead>
<tr>
<th>POWER</th>
<th>AC Power Connector: All models</th>
</tr>
</thead>
</table>
| INPUT | Input Connector: TB7 & TB8 for TC models
 TB9 for PR (Process) & RTD models |
| OPTION | Based on one of the following models:
 RS-232C or RS-485 |
2.3 Electrical Installation

2.3.1 Power Connections

⚠ **Caution:** Do not connect power to your device until you have completed all input and output connections. Failure to do so may result in injury!

Connect the main power connections as shown in Figure 2.4.

![Figure 2.4 Main Power Connections](image)

Figure 2.5 Inside Cover Rear View

![Figure 2.5 Inside Cover Rear View](image)
2.3.2 Thermocouple

The figure below shows the wiring hookup for any thermocouple type. For example, for Type K hookup, connect the yellow wire to the TB7 terminal and the red wire to the TB8 terminal.

When configuring your controller, select Thermocouple and Thermocouple Type in the Input Type menu (see Part 3).

![Thermocouple Wiring Hookup](image)

Figure 2.6 Thermocouple Wiring Hookup

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Input Connector</th>
<th>Jacket (external insulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terminal 8 (-)</td>
<td>Terminal 7 (+)</td>
</tr>
<tr>
<td>J</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>K</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>T</td>
<td>Red</td>
<td>Blue</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
<td>Purple</td>
</tr>
<tr>
<td>N</td>
<td>Red</td>
<td>Orange</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
<td>Black</td>
</tr>
<tr>
<td>S</td>
<td>Red</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td>Red</td>
<td>Gray</td>
</tr>
</tbody>
</table>
2.3.3 Two/Three/Four-Wire RTD

The figures below show the input connections and input connector jumpers (shown in bold lines) required to hookup a 2-, 3- or 4-wire RTD.

The **two-wire** connection is simplest method, but does not compensate for lead-wire temperature change and often requires calibration to cancel lead-wire resistance offset.

The **three-wire** connection works best with RTD leads closely equal in resistance. The device measures the RTD, plus upper and lower lead drop voltage and the subtracts twice the measured drop in the lower supply current lead producing excellent lead-resistance cancellation for balanced measurements.

The **four-wire** RTD hookup is applicable to unbalanced lead resistance and enables the device to measure and subtract the lead voltage, which produces the best lead-resistance cancellation.

When configuring your controller, select RTD type and RTD value in the Input Type menu (see Part 3).

Note If the input wires of the meter get disconnected or broken, it will display **+OPEN** “Input (+) Open” message except in case of 500/1000 Ω 2-wire RTD. In this case the display shows **-OPEN** “Input (-) Open” message. For safety purpose you may want to set up your alarm to be triggered when input is open. See Alarm 1 & 2 chapters for details.
2.3.4 Process Current

The figure below shows the wiring hookup for Process Current 0 – 20 mA.

![Figure 2.8 Process Current Wiring Hookup (Internal and External Excitation)](image)

When configuring your instrument, select Process Type in the Input Type Menu (see Part 3).

2.3.5 Process Voltage

The figure below shows the wiring hookup for Process Voltage 0 – 100 mV, 0 – 1 V, 0 – 10 V.

![Figure 2.9 Process Voltage Wiring Hookup](image)

- **RL** - Voltage limiting resistor, which allows conversion of the 24 Vdc internal excitation voltage to the appropriate process input value. For instance: if the potentiometer value is equal to 10 kΩ, the minimum RL is 14 kΩ for 10 V process input.

When configuring your instrument, select Process Type in the Input Type Menu (see Part 3).
2.3.6 Communication Output

This device may have a programmable communication output. The RS-232 and RS-485 Output Connection are shown below.

Figure 2.10
a) RS-232 Output Wiring Hookup b) RS-485 Output Wiring Hookup
PART 3
OPERATION: Configuration Mode

3.1 Introduction

The instrument has two different modes of operation. The first, Run Mode, is used to display values for the Process Variable, and to display or clear Peak and Valley values. The other mode, Menu Configuration Mode, is used to navigate through the menu options and configure the controller. Part 3 of this manual will explain the Menu Configuration Mode. For your instrument to operate properly, the user must first "program" or configure the menu options.

Turning your Controller On for the First Time

The device becomes active as soon as it is connected to a power source. It has no On or Off switch. The device at first momentarily shows the software version number, followed by reset RST, and then proceeds to the Run Mode.

Table 3.1 Button Function in Configuration Mode

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>To enter the Menu, the user must first press button. Use this button to advance/navigate to the next menu item. The user can navigate through all the top level menus by pressing . While a parameter is being modified, press to escape without saving the parameter.</td>
</tr>
<tr>
<td>(UP)</td>
<td>Press the up button to scroll through “flashing” selections. When a numerical value is displayed press this key to increase value of a parameter that is currently being modified. Holding the button down for approximately 3 seconds will speed up the rate at which the set point value increments. In the Run Mode press causes the display to flash the PEAK value – press again to return to the Run Mode.</td>
</tr>
<tr>
<td>(DOWN)</td>
<td>Press the down button to go back to a previous Top Level Menu item. Press this button twice to reset the controller to the Run Mode. When a numerical value is flashing (except set point value) press to scroll digits from left to right allowing the user to select the desired digit to modify. When a setpoint value is displayed press to decrease value of a setpoint that is currently being modified. Holding the button down for approximately 3 seconds will speed up the rate at which the setpoint value is decremented. In the Run Mode press causes the display to flash the VALLEY value – press again to return to the Run Mode.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Press the enter button to access the submenus from a Top Level Menu item. Press to store a submenu selection or after entering a value — the display will flash a message to confirm your selection. To reset flashing Peak or Valley press . In the Run Mode, press twice to enable Standby Mode with flashing STBY.</td>
</tr>
</tbody>
</table>

Reset: Except for Alarms, modifying any settings of the menu configuration will reset the instrument prior to resuming Run Mode.
3.2 Menu Configuration

It is recommended that you put the controller in the Standby Mode for any configuration change other than Setpoints & Alarms.

![Flow Chart for ID and Setpoints](image-url)

Figure 3.1 Flow Chart for ID and Setpoints
3.2.1 ID Number

SEE ID MENU SELECTION IN CONFIGURATION SECTION FOR ENABLE/DISABLE OR CHANGE ID CODE.

If ID Code is Disabled or set as Default (0000) the menu will skip ID step to Setpoint Menu.

If ID Code is set to Full Security Level and user attempts to enter the Main Menu, they will be prompted for an ID Code.

If ID Code is set to Setpoint/ID Security Level and user attempts to enter the Configuration Menu, they will be prompted for an ID Code.

ENTERING YOUR NON-DEFAULT FULL SECURITY ID NUMBER.

1) Display shows **Id**.
2) Display advances to ____.
3) Press **a** to increase digit 0-9. Press **b** to activate next digit (flashing). Continue to use **a** and **b** to enter your 4-digit ID code.
4) If the correct ID code is entered, the menu will advance to the Setpoint 1 Menu, otherwise an error message **ERR** will be displayed and the instrument will return to the Run Mode.

To change ID Code, see ID Menu in the Configuration section.

ENTERING YOUR NON-DEFAULT SETPOINT/ID SECURITY ID NUMBER.

5) Display shows **SP1** Setpoint 1 Menu.
6) Display shows **SP2** Setpoint 2 Menu.
7) Display shows **Id** ID Code Menu.
8) Display advances to ____.
9) Use **a** and **b** to change your ID Code.
10) If correct ID Code is entered, the display will advance to the **INPT** Input Menu, otherwise the error message **ERR** will be displayed and the controller will return to the Run Mode.

To prevent unauthorized tampering with the setup parameters, the instrument provides protection by requiring the user to enter the ID Code before allowing access to subsequent menus. If the ID Code entered does not match the ID Code stored, the controller responds with an error message and access to subsequent menus will be denied.

Use numbers that are easy for you to remember. If the ID Code is forgotten or lost, call customer service with your serial number to access and reset the default to **0000**.
3.2.2 Set Points

SETPOINT 1:

Press 1) Press , if necessary until prompt appears.
Press 2) Display shows previous value of “Setpoint 1”.
Press & 3) Press and to increase or decrease Setpoint 1 respectively.

Holding & buttons down for approximately 3 seconds will speed up the rate at which the Setpoint value increments or decrements.

Press & 4) Continue to use and to enter your 4-digit Setpoint 1 value.
Press 5) Display shows stored message momentarily and then advances to only, if a change was made, otherwise press to advance to Setpoint 2 Menu.

SETPOINT 2:

Press 6) Display shows previous value of “Setpoint 2”.
Press & 7) Press and to increase or decrease Setpoint 2 respectively.

Holding & buttons down for approximately 3 seconds will speed up the rate at which the setpoint value increments or decrements.

Press 8) Display shows stored message momentarily and then advances to only, if a change was made, otherwise press to advance to Configuration Menu.
3.2.3 Configuration Menu

Enter Configuration Menu:
1) Press \(\Theta \), if necessary, until \(\text{CNFG} \) prompt appear.
2) Display advances to \(\text{INPT} \) Input Menu.
3) Pressing and releasing \(\Theta \) to scroll through all available menus of Configuration section.

3.2.4 Input Type Menu

Figure 3.2 Flow Chart for Configuration Menu

Figure 3.3 Flow Chart for Input Type Menu
Input Type (Thermocouple)

ENTER INPUT TYPE MENU:

Press 1) Press , if necessary, until prompt appears.
Press 2) Display advances to Input Menu.
Press 3) Display flashes or (Thermocouple, RTD or Process). If the displayed input type is , press to skip to step 6 (stops flashing).

THERMOCOUPLE SUBMENU:

Press 4) Scroll through the available selection to (flashing).
Press 5) Display shows stored message momentarily and then (not flashing).
Press 6) Display flashes previous thermocouple type selection. i.e. (see below for types).
Press 7) Scroll through the available thermocouple types to the selection of your choice.
Press 8) Display shows stored message momentarily and then advances to the Reading Configuration Menu.

Note: Use the Input Type (Thermocouple) (RTD) or (Process) and verify your Electrical Installation (see section 2.3).

Display: J K T E N DIN J R S B C
Input Type (RTD)

ENTER INPUT TYPE MENU:

Press ☀ 1) Press ☀, if necessary, until CNFG prompt appears.
Press ☀ 2) Display advances to INPT Input Menu.
Press ☀ 3) Display flashes T.c., RTD or PROC (Thermocouple, RTD or Process). If the displayed input type is RTD, press ☀ to skip to step 6 (RTD stops flashing).

RTD SUBMENU:

Press ☀ 4) Scroll through the available selection to RTD (flashing).
Press ☀ 5) Display shows STRD stored message momentarily and then RTD (not flashing).
Press ☀ 6) Display flashes previous RTD type selection i.e. 392.2 (see below for RTD types selection).
Press ☀ 7) Scroll through the available RTD types to the selection of your choice.
Press ☀ 8) Display shows STRD stored message momentarily and then advances to RTD RTD value.

RTD Types:

<table>
<thead>
<tr>
<th>Display</th>
<th>Two, Three or Four-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>392</td>
<td>392.2, 392.3, 392.4, 385.2, 385.3, 385.4</td>
</tr>
</tbody>
</table>

Note

Last digit indicates: 2-, 3- or 4-wire input.

RTD VALUE SUBMENU:

Press ☀ 9) Display flashes previous RTD value selection i.e. 100_ (see below for RTD value selection).
Press ☀ 10) Scroll through the available RTD values to the selection of your choice.
Press ☀ 11) Display shows STRD stored message momentarily and then advances to RDG Reading Configuration Menu.

RTD Values:

<table>
<thead>
<tr>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ohm 500 ohm 1000 ohm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>100_ 500_ 1000</td>
</tr>
</tbody>
</table>

19
Input Type (Process)

ENTER INPUT TYPE MENU:

Press ⇧ 1) Press ⇧, if necessary, until CHFG prompt appears.
Press ⇧ 2) Display advances to INPT Input Menu.
Press ⇧ 3) Display flashes T.c, RTD or PROC (Thermocouple, RTD or Process). If the displayed input type is PROC, press ⇧ to skip to step 6 (PROC stops flashing).

PROCESS SUBMENU:

Press ⇧ 4) Scroll through the available selection to PROC (flashing).
Press ⇧ 5) Display shows STD stored message momentarily and then PROC (not flashing).
Press ⇧ 6) Display flashes previous Process type selection. i.e. 0 - 10 (see below for Process types selection).
Press ⇧ 7) Scroll through the available Process types to the selection of your choice.
Press ⇧ 8) Display shows STD stored message and then advances to RDG Reading Configuration Menu.

Process Types: 100 mV 1 V 10 V 0 - 20 mA
Display: 0-0.1 0-1.0 0-10 0-20

For 4-20 mA Input select 0-20 mA then adjust the Input/Reading accordingly. To adjust 4-20 mA input, see example under INPUT/READING submenu. The factory preset value is 4-20 mA.

3.2.5 Reading Configuration

Figure 3.4 Flow Chart for Reading Configuration Menu
ENTER READING CONFIGURATION MENU:

Press ① 1) Press ①, if necessary, until **CHFG** prompt appears.
Press ② 2) Display advances to **INPT** Input Menu.
Press ③ 3) Display advances to **RDG** Reading Configuration Menu.
Press ④ 4) Display advances to **DEC** Decimal Point.

DECIMAL POINT SUBMENU:

Press ① 5) Display flashes previous selection for Decimal location.
Press ③ 6) Scroll through the available selections and choose Decimal location: **FFFF** or **FFF.F** (also **FF.FF** and **F.FFF** — if **PROC** Process type was selected in the Input Type Menu).
Press ③ 7) Display shows **STRD** stored message momentarily and then advances to **TEMP** Temperature Unit.

Note: Decimal Point for Process Input Type is passive.

TEMPERATURE UNIT SUBMENU:

Press ① 8) Display flashes previous Temperature Unit selection.
Press ③ 9) Scroll through the available selections to the Temperature Unit of your choice: **°F** or **°C**.
Press ③ 10) Display shows **STRD** stored message momentarily and then advances to **FLTR** Filter Constant.

FILTER CONSTANT SUBMENU:

Press ① 11) Display flashes previous selection for Filter Constant.
Press ③ 12) Scroll through the available selections:
 0001, 0002, 0004, 0008, 0016, 0032, 0064, 0128
Press ③ 13) Display shows **STRD** stored message momentarily only, if change was made, otherwise press ① to advance to the next menu.

Note: If Process was selected in the Input Type Menu the display will advance to **IN.RD** Input/Reading Submenu, otherwise the display advances to the **ALR1** Alarm 1 Menu.

The Filter Constant Submenu allows the user to specify the number of readings stored in the Digital Averaging Filter.

Tip: For PID control select filter value 0001-0004. A filter value of 2 is approximately equal to 1 second RC low pass time constant.
Reading Configuration (If Process was selected)

INPUT/READING (SCALE AND OFFSET) SUBMENU:

Input Voltage or Current can be converted or scaled into values appropriate for the process or signal being measured. So, a reading may be displayed, for example, in units of weight or velocity instead of in amperes or volts.

The instrument determines Scale and Offset values based on two user-provided input values entered with the corresponding readings. Note that “In1” Input 1 and “In2” Input 2 are represented and entered as a product of the input voltage/current and the conversion number from the Table 3.1.

The following instructions include details for a specific scenario in which a 4-20 mA input (in the 20 mA Process Mode) is to be represented as a measurement of 0-100 percent.

Press \textbf{14}) Press \textbf{ at the \textbf{Input 1} prompt. Display shows \textbf{Input 1} submenu.

Press \textbf{15}) Display shows Input 1 value with 1st digit flashing.

Press \textbf{16}) Use \textbf{ and \textbf{ buttons to enter \textbf{Input 1} value.

\textbf{Note}\n
The \textbf{Input 1} value = min. input value * conversion number.

Disregard the position of the decimal point, such that 2000 counts may actually appear as “200.0”, “20.00”, or “2.000”.

Example: 4 mA as 4(mA) x 500 = 2000.

Press \textbf{17}) Display advances to \textbf{Reading 1} Submenu.

Press \textbf{18}) Use \textbf{ and \textbf{ buttons to enter \textbf{Reading 1} value.

This value represents \textbf{Input 1} in terms of some meaningful engineering units. To show the 4 mA as zero percent enter \textbf{Reading 1} value = 0000.

Example: \textbf{Reading 1} value = 0000.

Press \textbf{19}) Display \textbf{Input 2} Submenu.

Press \textbf{20}) Display shows Input 2 value with 1st digit flashing.

The \textbf{Input 2} value = max. input value * conversion number.

Example: 20(mA) x 500 = 10000 (9999).

Press \textbf{21}) Use \textbf{ and \textbf{ buttons to enter \textbf{Input 2} value.

Press \textbf{22}) Display advances to \textbf{Reading 2} Submenu.

Press \textbf{23}) Use \textbf{ and \textbf{ buttons to enter \textbf{Reading 2} value.

Example: \textbf{Reading 2} value = 0100.

Press \textbf{24}) Display flashes \textbf{stored message momentarily and then advances to \textbf{Alarm 1} only, if change was made, otherwise press \textbf{ to advance to \textbf{Alarm 1} Menu.
Conversion number is a coefficient of conversion between input values and real full display range (10000 counts, shown as 9999). See Table 3.2 below for proper conversion number.

Table 3.2 Conversion Table

<table>
<thead>
<tr>
<th>RANGE</th>
<th>CONVERSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>$\frac{10000}{100 \times 1} = 100$</td>
</tr>
<tr>
<td>1 V</td>
<td>$\frac{10000}{1000 \times 1} = 10$</td>
</tr>
<tr>
<td>10 V</td>
<td>$\frac{10000}{1000 \times 10} = 1$</td>
</tr>
<tr>
<td>0 - 20 mA</td>
<td>$\frac{10000}{20 \times 1} = 500$</td>
</tr>
</tbody>
</table>

Example =

0 - 1 V = 0 - 100.0
In 1 = 0
Rd 1 = 0
Inp 2 = 9999
Rd 2 = 100.0
3.2.6 Alarm 1

Figure 3.5 Flow Chart for Alarm 1

ENTER ALARM 1 MENU:

- Press 1) Press ący, if necessary, until CHFG prompt appears.
- Press 2) Display advances to INPT Input Menu.
- Press 3) Press ący, if necessary, until Display advances to ALR 1 Alarm 1 Menu.
- Press 4) Display advances to Alarm 1 ENBL Enable or DSBL Disable Submenu and flashes the previous selection.
ALARM 1 ENABLE/DISABLE SUBMENU:

Press 5) Scroll though the available selection until ENbl displays to use Alarm 1.
Press 6) Display shows STRd stored message momentarily and then advances to ABSa only if it was changed, otherwise press to advance to ABSa Alarm 1 Absolute/Deviation Submenu.

If DSbl Alarm 1 Disabled was selected, all submenus of Alarm 1 Menu will be skipped and meter advances to ALR2 Alarm 2 Menu. If ENbl Alarm 1 Enabled was selected, Output 1 would be automatically Disabled, and reassigned as Alarm 1.

ALARM 1 ABSOLUTE/DEVIATION SUBMENU:

Press 7) Display flashes previous selection. Press to ABSa Absolute or _DEV Deviation.
Press 8) Display shows STRd stored message momentarily and then advances to LTcH only if it was changed, otherwise press to advance to LTcH Alarm 1 Latch/Unlatch Submenu.

Absolute Mode allows Alarm 1 to function independently from Setpoint 1. If the process being monitored does not change often, then "Absolute" Mode is recommended.

Deviation Mode allows changes to Setpoint 1 to be made automatically to Alarm 1. Deviation mode is typically the ideal mode if the process temperature changes often. In Deviation Mode, set Alarm 1 a certain number of degrees or counts away from Setpoint 1 — this relation remains fixed even if Setpoint 1 is changed.

ALARM 1 LATCH/UNLATCH SUBMENU:

Press 9) Display flashes previous selection. Press to LTcH Latched or UNLT Unlatched.
Press 10) Display shows STRd stored message momentarily and then advances to CT.CL only, if it was changed, otherwise press to advance to CT.CL Contact Closure Submenu.

Latched Mode: Relay remains "latched" until reset. To reset already latched alarm, select Alarm Latch and press Max twice (i.e. Unlatch and then back to Latch) or from a Run Mode, push twice to put the controller in Standby Mode and then push one more time to return to the Run Mode.

Unlatched Mode: Relay remains latched only as long as the alarm condition is true.
ACTIVE SUBMENU:

Press 11) Display flashes previous selection. Press to scroll through the available selections: Above, Below, HI/Low and Band. (Band is active if Deviation was selected).

Press 12) Display shows stored message momentarily and then advances to only if it was changed, otherwise press to advance to Alarm Enable/Disable at Power On Submenu.

Above: Alarm 1 condition triggered when the process variable is greater than the Alarm Hi Value (Low value ignored).

Below: Alarm 1 condition triggered when the process variable is less than the Alarm Low Value (Hi value ignored).

Hi/Low: Alarm 1 condition triggered when the process variable is less than the Alarm Low Value or above the Hi Value.

Band: Alarm 1 condition triggered when the process variable is above or below the "band" set around Setpoint 1. Band equals Hi Value (Low Value ignored). A "band" is set around the Setpoint by the instrument only in the "Deviation" Mode.
ALARM ENABLE/DISABLE AT POWER ON:

Press 🔄 15) Display flashes previous selection. Press ▲ to ENBL enable or ▼ dsbl disable.
Press 🔄 16) Display shows STrD stored message. momentarily and then advances to ALR.L only if it was changed, otherwise press 🔄 to advance to the ALR.L Alarm 1 Low Value Submenu.

Note: If the alarm is enabled at Power On, the alarm will be active right after reset. If the alarm is disabled at Power On, the alarm will become enabled when the process value enters the non alarm area. The alarm is not active while the process value is approaching Setpoint 1.

ALARM 1 LOW VALUE SUBMENU:

Press 🔄 17) Display flashes 1st digit of previous value. Use ▲ and ▼ to enter new value.
Press 🔄 & ▼ 18) Use ▲ and ▼ to enter Alarm 1 Low Value.
Press 🔄 19) Display shows STrD storage message momentarily and then advances to ALR.H only, if it was changed, otherwise press 🔄 to advance to ALR.H Alarm 1 Hi Value Submenu.

ALARM 1 HI VALUE SUBMENU:

Press 🔄 20) Display flashes 1st digit of previous value. Use ▲ and ▼ to enter new value.
Press 🔄 & ▼ 21) Use ▲ and ▼ to enter Alarm1 Hi Value.
Press 🔄 22) Display shows STrD stored message momentarily and then advances to the next menu only, if it was changed, otherwise press 🔄 to advance to the next menu.
3.2.7 Alarm 2

ENTER ALARM 2 MENU:

Press ☐ 1) Press ☐, if necessary, until **CNFG** prompt appears.
Press ☐ 2) Display advances to **INPT** Input Menu.
Press ☐ 3) Press ☐, if necessary, until Display advances to **ALR2** Alarm 2 Menu.
Press ☐ 4) Display advances to Alarm 2 **ENbL** Enable or **DSbL** Disable Submenu.

ALARM 2 ENABLE/DISABLE SUBMENU:

Press ☐ 6) Display shows **STRd** stored message momentarily and then advances to **Absa** only if it was changed, otherwise press ☐ to advance to **Absa** Absolute/Deviation Submenu.

If **DSbL** Alarm 2 **Disabled** was selected, all submenus of Alarm 2 will be skipped and meter advances to **R.ADJ** Cold Junction (C.J.) Reading Adjust Menu.

The remaining Alarm 2 menu items are identical to Alarm 1 Menu. Modifying Alarm Settings will not reset the instrument.
3.2.8 Reading Adjust Menu

Figure 3.7 Flow Chart for Reading Adjust Menu

ENTER READING ADJUST MENU:

Press 1) Press , if necessary, until prompt appears.
Press 2) Display advances to Input Menu.
Press 3) Press , if necessary, until Display advances to Reading Adjust Menu.

READING ADJUST VALUE SUBMENU:

Press 4) Display flashes 1st digit of previous Reading Adjust value.
Press & 5) Press and buttons to enter a new Reading Adjust value (-1999 to 9999).
Press 6) Display shows stored message momentarily and then advances to Setpoint Deviation Menu.

Reading Offset Adjust allows the user to fine tune a minor error of the transducer, however some applications may require a large offset adjust. (Displayed Process Value = Measured Process Value ±R.ADJ). Reading Adjust value is adjustable between -1999 to 9999.
3.2.9 Setpoint Deviation Menu / Field Calibration

ENTER SETPOINT DEVIATION MENU:
Press ☞ 1) Press ☞, if necessary, until [CNFG] prompt appears.
Press ☞ 2) Display advances to [INPT] Input Menu.
Press ☞ 3) Press ☞, if necessary, until Display advances to [SP_dv] Setpoint Deviation Menu.

SETPOINT DEVIATION ENABLE/DISABLE SUBMENU:
Press ☞ 4) Display advances to Setpoint Deviation [ENbl] Enable or [DSbl] Disable Submenu and flashes the previous selection.
Press ☞ 5) Scroll through the available selections: [ENbl] or [DSbl].
Press ☞ 6) Display shows [STRd] stored message momentarily and then advances to the next menu item.

Setpoint Deviation menu, if “enabled”, allows changes to Setpoint 1 to be made automatically to Setpoint 2. This mode is very helpful if the Process temperature changes often. In Setpoint Deviation Mode, set SP2 a certain number of degrees or counts away from SP1 - this relation remains fixed when SP1 is changed. For instance: Setting SP1=200 and SP2=20 and enabling [SP_dv] means that the absolute value of SP2=220. Moving SP1 to 300, the absolute value of SP2 becomes 320.

THERMOCOUPLE FIELD CALIBRATION SUBMENU:

⚠️ CAUTION: Do not perform the following steps until you fully understand this entire section.

Note: RTD and Process are perfectly calibrated. This section is applicable to Thermocouple (TC) calibration only.

Be sure that the TC being used to calibrate the meter is of the type selected in the TC submenu. Place the TC in an ice-bath (or other 0°C / 32°F environment). In ambient temperature conditions: connect the TC to the meter, apply power to the meter.

⚠️ CAUTION: Do not proceed with TC calibration unless the above conditions have been in effect for at least one hour.

Press ☞ 7) Display shows [CAL].
Press ☞ 8) Display shows flashing 0000.
Press ☞ * 9) Display will still show flashing 0000.
Press ☞ * 10) Display shows OUT 1 (meaning Calibration is complete)

* If you accidentally engage the flashing 0000 (CAL° alert) simply re-press the last button you pressed, to avoid unintentionally mis-calibrating your meter.
3.2.10 ID CODE

Figure 3.9 Flow Chart for ID Code

ENTER ID CODE MENU:

Press **1)** Press **,** if necessary, until \textit{CNFG} prompt appears.
Press **2)** Display advances to \textit{INPT} Input Menu.
Press **3)** Press **,** if necessary, until Display advances to \textit{ID} ID Code Menu.

ENTERING OR CHANGING YOUR (NON-DEFAULT) ID CODE:

Press **4)** Display advances to ____ with 1st under score flashing.
Press **5)** Press **&** to enter your 4-digit “ID Code” number.
Press **6)** Display advances to \textit{CH, Id} Change ID Code Submenu.

\textbf{Note}\textit{**:**} If entered “ID Code” is incorrect display shows \textit{ERR} Error message momentarily and then skips to the Run Mode.

Press **7)** Display flashes the first digit of previous entered “ID Code” number.
Press **8)** Press **&** buttons to enter your new “ID Code” number.
Press **9)** Display shows \textit{STRD} stored message momentarily and then advances to the \textit{FULL} Full Security Submenu.
ENTERING OR CHANGING YOUR (DEFAULT) ID CODE:

Enter ID menu (Repeat steps from 1 to 3).

Press 11) Display shows 0000 message with flashing 1st digit.

If you want to change your default “ID Code” you can do it now, otherwise press and menu will skip to FULL Full Security Submenu.

Press 12) Press and buttons to enter your new “ID Code” number.
Press 13) Display shows STRD stored message momentarily and then advances to the FULL Full Security Submenu.

FULL SECURITY LEVEL SUBMENU:

Press 14) Display flashes Enable or Disable.
Press 15) Scroll through the available selections: “Enable” or “Disable”.
Press 16) Display shows STRD stored message momentarily and then advances to SP.ID Setpoint/ID Submenu.

If "Full" Security Level is "Enabled" and the user attempts to enter the Main Menu, they will be prompted for an ID Code. The ID Code should be correct to enter the instrument Menu item.

SETPOINT/ID SECURITY LEVEL SUBMENU:

This Security Level can be functional only if FULL Security Level is Disabled.

Press 17) Display flashes Enable or Disable.
Press 18) Scroll through the available selections: “Enable” or “Disable”.
Press 19) Display shows STRD stored message momentarily and then advances to COMM Communication Submenu.

If "Setpoint/ID" Security Level is "Enabled" and the user attempts to advance into the CHFC Configuration Menu, he will be prompted for ID Code number. The ID Code should be correct to proceed into the Configuration Menu, otherwise display will show an Error and skip to the Run Mode.

If “Full” and “Setpoint/ID” Security Levels are "Disabled", the ID code will be “Disabled” and user will not be asked for ID Code to enter the Menu items (“ID” Submenu will not show up in “ID/Setpoint” Menu).
3.2.11 COMMUNICATION OPTION

Purchasing the controller with Serial Communications permits an instrument to be configured or monitored from an IBM PC compatible computer using software available from the website or on the CD-ROM enclosed with your shipment. For complete instructions on the use of the Communications Option, refer to the Serial Communications Reference Manual.

Figure 3.10 Flow Chart for Communication Option
ENTER COMMUNICATION OPTION MENU:

1) Press \(\text{CHFG}\), if necessary, until \(\text{CHFG}\) prompt appears.
2) Display advances to \(\text{INPT}\) Input Menu.
3) Press \(\text{CHFG}\), if necessary, until Display advances to \(\text{CONN}\) Communication Options Menu.
4) Display advances to \(\text{C.PAR}\) Communication Parameters Submenu.

If Communication Option is not installed, the display shows \(\text{NONE}\) and skips to the Color Display Menu.

COMMUNICATION PARAMETERS SUBMENU:

Allows the user to adjust Serial Communications Settings of the instrument. When connecting an instrument to a computer or other device, the Communications Parameters must match. Generally the default settings (as shown in Section 5) should be utilized.

5) Display advances to \(\text{BAUD}\) Baud Submenu.

BAUD SUBMENU:

6) Display flashes previous selection for \(\text{BAUD}\) value.
7) Scroll through the available selections: 300, 600, 1200, 2400, 4800, 9600, 19.2K.
8) Display shows \(\text{STRD}\) stored message momentarily and then advances to \(\text{PRTY}\) only, if it was changed, otherwise press \(\text{CHFG}\) to advance to \(\text{PRTY}\) Parity Submenu.

PARITY SUBMENU:

9) Display flashes previous selection for “Parity”.
10) Scroll through the available selections: NO, ODD, EVEN.
11) Display shows \(\text{STRD}\) stored message momentarily and then advances to \(\text{DATA}\) only, if it was changed, otherwise press \(\text{CHFG}\) to advance to \(\text{DATA}\) Data Bit Submenu.

DATA BIT SUBMENU:

12) Display flashes previous selection for “Data Bit”.
13) Scroll through the available selections: 7-BIT, 8-BIT.
14) Display shows \(\text{STRD}\) stored message and then advances to \(\text{STOP}\) only, if it was changed, otherwise press \(\text{CHFG}\) to advance to \(\text{STOP}\) Stop Bit Submenu.
STOP BIT SUBMENU:
Press 15) Display flashes previous selection for “Stop Bit”.
Press 16) Scroll through the available selections: 1-BIT, 2-BIT.
Press 17) Display shows stored message momentarily and then advances to Bus Format Submenu.

BUS FORMAT SUBMENU:
Determines Communications Standards and Command/Data Formats for transferring information into and out of the controller via the Serial Communications Bus. Bus Format submenus essentially determine how and when data can be accessed via the Serial Communications of the device.

MODBUS PROTOCOL SUBMENU:
Press 19) Display flashes previous selection for Modbus.
Press 20) Scroll through the available selections: NO, YES.
Press 21) Display shows stored message momentarily and then advances to Line Feed only, if it was changed, otherwise press to advance to Line Feed submenu.

To select iSeries Protocol, set Modbus submenu to “No”. To select Modbus Protocol, set Modbus submenu to “Yes”.

If Modbus Protocol was selected, the following Communications Parameters must be set as: No Parity, 8-bit Data Bit, 1-Stop Bit. Do not attempt to change these parameters.

LINE FEED SUBMENU:
Determines if data sent from the instrument will have a Line Feed appended to the end - useful for viewing or logging results on separate lines when displayed on communications software at a computer.
Press 22) Display flashes previous selection for “Line Feed”.
Press 23) Scroll through the available selections: NO, YES.
Press 24) Display shows stored message momentarily and then advances to Echo Submenu.

ECHO SUBMENU:
When valid commands are sent to the instrument, this determines whether the command will be echoed to the Serial Bus. Use of echo is recommended in most situations, especially to help verify that data was received and recognized by the controller.
Press
25) Display flashes previous selection for “Echo”.
Press
26) Scroll through the available selections: NO, YES.
Press
27) Display flashes \textit{STRD} stored message momentarily and then advances to \textit{STND} only if it was changed, otherwise press to advance to \textit{STND} Communication Standard Submenu.

COMMUNICATION INTERFACE STANDARD SUBMENU:

Determines whether device should be connected to an RS-232C serial port (as is commonly used on IBM PC-compatible computers) or via an RS-485 bus connected through appropriate RS-232/485 converter. When used in RS-485 Mode, the device must be accessed with an appropriate Address Value as selected in the Address Submenu described later.

Press
28) Display flashes previous selection for “Standard”.
Press
29) Scroll through the available selections: 232C, 485.
Press
30) Display shows \textit{STRD} stored message momentarily and then advances to \textit{MoDE} only, if it was changed, otherwise press to advance to \textit{MoDE} Data Flow Mode Submenu.

DATA FLOW MODE SUBMENU:

Determines whether the instrument will wait for commands and data requests from the Serial Bus or whether the instrument will send data automatically and continuously to the Serial Bus. Devices configured for the RS-485 Communications Standard operate properly only under Command Mode.

Press
31) Display flashes previous selection for “Mode”.
Press
32) Scroll through the available selections: \textit{CMD} “Command”, \textit{CoNT} “Continuous”.
Press
33) Display shows \textit{STRD} stored message momentarily and then advances to \textit{SEPR} only, if it was changed, otherwise press to advance to \textit{SEPR} Data Separation Submenu.

DATA SEPARATION CHARACTER SUBMENU:

Determines whether data sent from the device in Continuous Data Flow Mode will be separated by spaces or by Carriage Returns.

Press
34) Display flashes previous selection for “Separation” Submenu.
Press
35) Scroll through the available selections: \textit{SPCE} “Space” or \textit{___CR__} “Carriage Return”.
Press
36) Display shows \textit{STRD} stored message momentarily and then advances to \textit{DAT.F} only, if it was changed, otherwise press to advance to \textit{DAT.F} Data Format Submenu.
DATA FORMAT SUBMENU:

Preformatted data can be sent automatically or upon request from the controller. Use the Data Format Submenus to determine what data will be sent in this preformatted data string. Refer to the iSeries Communications Manual for more information about the data format. At least one of the following suboptions must be enabled and hence output data to the Serial Bus.

Note: This menu is applicable for Continuous Mode of RS-232 communication.

Press 37) Display advances to Alarm Status Submenu.

ALARM STATUS SUBMENU:

Includes Alarm Status bytes in the data string.

Press 38) Display flashes previous selection for “Status” (alarm status).
Press 39) Scroll through the available selections: NO, YES.
Press 40) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Reading Submenu.

MAIN READING SUBMENU:

Includes Main Reading in the data string.

Press 41) Display flashes previous selection for “Reading”.
Press 42) Scroll through the available selections: NO, YES.
Press 43) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Peak Submenu.

PEAK VALUE SUBMENU:

Includes Peak Value in the data string.

Press 44) Display flashes previous selection for Submenu.
Press 45) Scroll through the available selections: NO, YES.
Press 46) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Valley Submenu.

VALLEY VALUE SUBMENU:

Includes Valley Value in the data string.

Press 47) Display flashes previous selection for “Valley”.
Press 48) Scroll through the available selections: NO, YES.
Press 49) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Temperature Unit Submenu.
TEMPERATURE UNIT SUBMENU:

Includes a byte in the data string to indicate whether reading is in Celsius or Fahrenheit.

Press 50) Display flashes previous selection for UNIT.
Press 51) Scroll through the available selections: NO, YES.
Press 52) Display shows stored message momentarily and then advances to ADDR only, if it was changed, otherwise press to advance to ADDR Address Setup Submenu.

ADDRESS SETUP SUBMENU:

This menu is applicable to the RS-485 Option only.

Press 53) Display advances to “Address Value” (0000 to 0199) Submenu.

ADDRESS VALUE SUBMENU:

Press 54) Display flashes 1st digit of previously stored Address Value.
Press 55) Press and to enter new “Address Value”.
Press 56) Display shows stored message momentarily and then advances to ADDR only, if it was changed, otherwise press to advance to ADDR Transmit Time Interval Submenu.

TRANSMIT TIME INTERVAL SUBMENU:

This menu is applicable if “Continuous” Mode was selected in the “Data Flow Mode” Submenu and the device is configured as an RS-232C Standard device. Also, one or more options under the Data Format Submenu must be enabled.

Press 57) Display advances to “Transmit Time Value” Submenu.

TRANSMIT TIME INTERVAL VALUE SUBMENU:

Determines the interval at which data will be emitted to the RS-232 Serial Bus when the instrument is in Continuous Data Flow Mode.

Press 59) Press and to enter new “Transmit Time Value”, e.g. 0030 will send the data every 30 seconds in Continuous Mode.
Press 60) Display shows stored message momentarily and then advances to COLOR only, if it was changed, otherwise press to advance to COLOR Color Display Selection Menu.

For more details, refer to the Communication Manual available at the website listed in the cover page of this manual or on the CD-ROM enclosed with your shipment.
3.2.12 DISPLAY COLOR SELECTION

This submenu allows the user to select the color of the display.

ENTER DISPLAY COLOR SELECTION MENU:

- Press ⊜ 1) Press ⊜, if necessary, until CHFG prompt appears.
- Press ⊜ 2) Display advances to INPT Input Menu.
- Press ⊜ 3) Press ⊜, if necessary, until Display advances to COLOR Display Color Selection Menu.
- Press ⊜ 4) Display advances to N.CLR Normal Color Submenu.

NORMAL COLOR DISPLAY SUBMENU:

- Press ⊜ 5) Display flashes the previous selection for “Normal Color”.
- Press ▲ 6) Scroll through the available selections: GRN, RED or AMBR.
- Press ⊜ 7) Display shows STRD stored message momentarily and then advances to 1.CLR only, if it was changed, otherwise press ⊜ to advance to 1.CLR Alarm 1 Display Color Submenu.

The menu below allows the user to change the color of display when alarm is triggered.

ALARM 1 DISPLAY COLOR SUBMENU:

- Press ⊜ 8) Display flashes previous selection for “Alarm 1 Color Display”.
- Press ▲ 9) Scroll through the available selections: GRN, RED or AMBR.
- Press ⊜ 10) Display shows STRD stored message momentarily and then advances to 2.CLR only, if it was changed, otherwise press ⊜ to advance to 2.CLR Alarm 2 Display Color Submenu.
ALARM 2 DISPLAY COLOR SUBMENU:

Press 11) Display flashes previous selection for “Alarm 2 Color Display”.
Press 12) Scroll through the available selections: GRN, RED or AMBR.
Press 13) Display shows STRD stored message momentarily and then momentarily shows the software version number, followed by RST Reset, and then proceeds to the Run Mode.

IN ORDER TO DISPLAY ONE COLOR, SET THE SAME DISPLAY COLOR ON ALL THREE SUBMENUS ABOVE.

If user wants the Display to change color every time when both Alarm 1 and Alarm 2 are triggered, the Alarm values should be set in such a way that Alarm 1 value is always on the top of Alarm 2 value, otherwise value of Alarm 1 will overwrite value of Alarm 2 and Display Color would not change when Alarm 2 is triggered.

Example 1:

Alarm Setup: Absolute, Above, Alarm 2 HI Value “ALR.H” = 200, Alarm 1 HI Value “ALR.H” = 400

Display Colors change sequences:

```
<table>
<thead>
<tr>
<th>GREEN</th>
<th>RED</th>
<th>AMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AL2.H = 200</td>
<td>AL1.H = 400</td>
</tr>
</tbody>
</table>
```

Example 2:

Alarm Setup: Absolute, Below, Alarm 2 Low Value “ALR.L” = 300, Alarm 1 Low Value “ALR.L” = 100
Color Display Setup: "N.CLR" = Green, "1.CLR" = Amber, "2.CLR" = Red

Display Colors change sequences:

```
<table>
<thead>
<tr>
<th>AMBER</th>
<th>RED</th>
<th>GREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AL1.L = 100</td>
<td>AL2.L = 300</td>
</tr>
</tbody>
</table>
```
Example 3:
Setpoint 1 = 300,
Setpoint 2 = 200
Alarm 1 & 2 Setup: Deviation, Band, “ALR.H” = 10
Color Display Setup: “N.CLR” = Green, “1.CLR” = Amber, “2.CLR” = Red

Display Colors change sequences:

```
0  190  200  210  290  300  310
RED  RED  RED  GREEN  RED
```

Alarm 1 is designed to monitor the Process Value around the Setpoint 1. Alarm 2 is designed to monitor the Process Value around the Setpoint 2. If Analog Output Option board is installed (Alarm 1 is disabled), only Alarm 2 is active and only two colors are available.

Example 4:
Setpoint 1 = 200
Setpoint 2 = 200
Alarm 1 Setup: Deviation, Band, “ALR.H” = 20
Alarm 2 Setup: Deviation, Hi/Low, “ALR.H” = 10, “ALR.L” = 5
Color Display Setup: “N.CLR” = Green, “1.CLR” = Amber, “2.CLR” = Red

Display colors change sequences:

```
0  180  195  200  210  220
AMBER  RED  GREEN  GREEN  RED  AMBER
```

Reset: The instrument automatically resets after the last menu of the Configuration Mode has been entered. After the instrument resets, it advances to the Run Mode.
PART 4
SPECIFICATIONS

Accuracy
±0.5°C temp; 0.03% reading process

Resolution
1°/0.1°; 10 µV process

Temperature Stability
1) RTD: 0.04°C/°C
2) TC @ 25°C (77°F): 0.05°C/°C
 - Cold Junction Compensation
3) Process: 50 ppm/°C

NMRR
60 dB

CMRR
120 dB

A/D Conversion
Dual slope

Reading Rate
3 samples per second

Digital Filter
Programmable

Display
4-digit or 6-digit, 7-segment LED
57.2 mm (2.25”) or 101.6mm (4.00”)
red, green and amber programmable
colors for process variable, set point
and temperature units

Warm up to Rated Accuracy
60 min.

INPUT
Input Types
Thermocouple, RTD, Analog
Voltage, Analog Current

Thermocouple Type (ITS 90)

Thermocouple Lead Resistance
100 ohm max

RTD Input (ITS 68)
100/500/1000 Ω Pt sensor, 2-, 3- or
4-wire; 0.00385 or 0.00392 curve

Voltage Input
0 to 100 mV, 0 to 1 V, 0 to 10 Vdc

Input Impedance
10 MΩ for 100 mV
1 MΩ for 1 or 10 Vdc

Current Input
0 to 20 mA (5 ohm load)

Configuration
Single-ended

Polarity
Unipolar

Step Response
0.7 sec for 99.9%

Decimal Selection
None, 0.1 for temperature
None, 0.1, 0.01 or 0.001 for process

Setpoint Adjustment
-1999 to 9999 counts

Span Adjustment
0.001 to 9999 counts

Offset Adjustment
-1999 to +9999

Accuracy
±0.5°C temp; 0.03% reading process

Resolution
1°/0.1°; 10 µV process

Temperature Stability
1) RTD: 0.04°C/°C
2) TC @ 25°C (77°F): 0.05°C/°C
 - Cold Junction Compensation
3) Process: 50 ppm/°C

NMRR
60 dB

CMRR
120 dB

A/D Conversion
Dual slope

Reading Rate
3 samples per second

Digital Filter
Programmable

Display
4-digit or 6-digit, 7-segment LED
57.2 mm (2.25”) or 101.6mm (4.00”)
red, green and amber programmable
colors for process variable, set point
and temperature units

Warm up to Rated Accuracy
60 min.

INPUT
Input Types
Thermocouple, RTD, Analog
Voltage, Analog Current

Thermocouple Type (ITS 90)

Thermocouple Lead Resistance
100 ohm max

RTD Input (ITS 68)
100/500/1000 Ω Pt sensor, 2-, 3- or
4-wire; 0.00385 or 0.00392 curve

Voltage Input
0 to 100 mV, 0 to 1 V, 0 to 10 Vdc

Input Impedance
10 MΩ for 100 mV
1 MΩ for 1 or 10 Vdc

Current Input
0 to 20 mA (5 ohm load)

Configuration
Single-ended

Polarity
Unipolar

Step Response
0.7 sec for 99.9%

Decimal Selection
None, 0.1 for temperature
None, 0.1, 0.01 or 0.001 for process

Setpoint Adjustment
-1999 to 9999 counts

Span Adjustment
0.001 to 9999 counts

Offset Adjustment
-1999 to +9999
NETWORK AND COMMUNICATIONS
(Optional -C24, -C4EI)

Ethernet: Standards Compliance
IEEE 802.3 10Base-T

Supported Protocols: TCP/IP, ARP, HTTPGET

RS-232/RS-422/RS-485:
Programmable 300 to 19.2 K baud; complete programmable setup capability; program to transmit current display, alarm status, Peak and Valley value.

RS-485: Addressable from 0 to 199

Connection: Screw terminals

ALARM 1 & 2 (programmable):

Operation
High/low, above/below, band, latch/unlatch, normally open/normally closed and process/deviation; front panel configurations

INSULATION

Power to Input/Output
2300 Vac per 1 minute test
(RS-232/485, Input or Output)

Between Inputs
500 Vac per 1 minute test

Approvals
See CE Approval Section

GENERAL

Power
100-240 Vac +/-10%, 50/60 Hz
22.5 W

Fuse
4A, 250V, GFE, 5x20mm

Environmental Conditions
0 to 40°C (32 to 104°F),
90% RH non-condensing

Protection
NEMA-4x (IP65) front bezel

Dimensions and Panel Cutout
Refer to Quickstart Specifications.

Weight
Refer to Quickstart Specifications.
Table 4.1 Input Properties

<table>
<thead>
<tr>
<th>TC</th>
<th>Input Type</th>
<th>Range</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Iron-Constantan</td>
<td>-210 to 760°C, -346 to 1400°F</td>
<td>0.4°C, 0.7°F</td>
</tr>
<tr>
<td>K</td>
<td>CHROMEGA®-ALOMEGA®</td>
<td>-270 to -160°C, -160 to 1372°C, -454 to -256°F, -256 to 2502°F</td>
<td>1.0°C, 0.4°C, 1.8°F, 0.7°F</td>
</tr>
<tr>
<td>T</td>
<td>Copper-Constantan</td>
<td>-270 to -190°C, -190 to 400°C, -454 to -310°F, -310 to 752°F</td>
<td>1.0°C, 0.4°C, 1.8°F, 0.7°F</td>
</tr>
<tr>
<td>E</td>
<td>CHROMEGA-Constantan</td>
<td>-270 to -220°C, -220 to 1000°C, -454 to -364°F, -364 to 1832°F</td>
<td>1.0°C, 0.4°C, 1.8°F, 0.7°F</td>
</tr>
<tr>
<td>R</td>
<td>Pt/13%Rh-Pt</td>
<td>-50 to 40°C, 40 to 1788°C, -58 to 104°F, 104 to 3250°F</td>
<td>1.0°C, 0.5°C, 1.8°F, 0.9°F</td>
</tr>
<tr>
<td>S</td>
<td>Pt/10%Rh-Pt</td>
<td>-50 to 100°C, 100 to 1768°C, -58 to 212°F, 212 to 3214°F</td>
<td>1.0°C, 0.5°C, 1.8°F, 0.9°F</td>
</tr>
<tr>
<td>B</td>
<td>30%Rh-Pt/6%Rh-Pt</td>
<td>200 to 640°C, 640 to 1820°C, 212 to 1184°F, 1184 to 3308°F</td>
<td>1.0°C, 0.5°C, 1.8°F, 0.9°F</td>
</tr>
<tr>
<td>C</td>
<td>5%Re-W/26%Re-W</td>
<td>0 to 2354°C, 32 to 4253°F</td>
<td>0.4°C, 0.7°F</td>
</tr>
<tr>
<td>N</td>
<td>Nicrosil-Nisil</td>
<td>-250 to -100°C, -100 to 1300°C, -418 to -148°F, -148 to 2372°F</td>
<td>1.0°C, 0.4°C, 1.8°F, 0.7°F</td>
</tr>
<tr>
<td>L</td>
<td>J,DIN</td>
<td>-200 to 900°C, -328 to 1652°F</td>
<td>0.4°C, 0.7°F</td>
</tr>
<tr>
<td>RTD</td>
<td>Pt, 0.00385, 100 Ω, 500 Ω, 1000 Ω</td>
<td>200 to 900°C, 328 to 1652°F</td>
<td>0.4°C, 0.7°F</td>
</tr>
<tr>
<td>RTD</td>
<td>Pt, 0.00392, 100 Ω, 500 Ω, 1000 Ω</td>
<td>-200 to 850°C, -328 to 1562°F</td>
<td>0.4°C, 0.7°F</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Voltage</td>
<td>0 to 100 mV, 0 to 1 V, 0 to 10 Vdc</td>
<td>0.03% rdg</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Current</td>
<td>0 to 20 mA, 4 to 20 mA</td>
<td>0.03% rdg</td>
</tr>
</tbody>
</table>
PART 5
FACTORY PRESET VALUES

<table>
<thead>
<tr>
<th>MENU ITEMS</th>
<th>FACTORY PRESET VALUES</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Point 1 (SP1)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Set Point 2 (SP2)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Type (INPT)</td>
<td>TC, type K</td>
<td></td>
</tr>
<tr>
<td>Reading Configuration (RDG):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal Point (DEC.P)</td>
<td>FFF.F</td>
<td></td>
</tr>
<tr>
<td>Temperature unit (TEMP)</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Filter value (FLTR)</td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>Alarm 1 & 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm 1 (ALR1), Alarm 2 (ALR2)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Absolute/Deviation (ABSO/DEV)</td>
<td>Absolute (ABSO)</td>
<td></td>
</tr>
<tr>
<td>Latch/Unlatch (LTCH/UNLT)</td>
<td>Unlatch (UNLT)</td>
<td></td>
</tr>
<tr>
<td>Active (ACTV)</td>
<td>Above (ABOV)</td>
<td></td>
</tr>
<tr>
<td>Alarm At Power On (A.P.ON)</td>
<td>Disable (DSBL)</td>
<td>Alarm 1 only</td>
</tr>
<tr>
<td>Alarm Low (ALR.L)</td>
<td>-100.0</td>
<td></td>
</tr>
<tr>
<td>Alarm High (ALR.H)</td>
<td>400.0</td>
<td></td>
</tr>
<tr>
<td>ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Value</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Full ID (FULL)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Set Point ID (ID.SP)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Communication Parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate (BAUD)</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Parity (PTY)</td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td>Data bit (DATA)</td>
<td>7 bit</td>
<td></td>
</tr>
<tr>
<td>Stop Bit</td>
<td>1 bit</td>
<td></td>
</tr>
<tr>
<td>Modbus Protocol (M.BUS)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Line Feed (LF)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Echo (ECHO)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Standard Interface (STND)</td>
<td>RS-232 (232C)</td>
<td></td>
</tr>
<tr>
<td>Command Mode (MODE)</td>
<td>Command (CMD)</td>
<td></td>
</tr>
<tr>
<td>Separation (SEPR)</td>
<td>Space (SPCE)</td>
<td></td>
</tr>
<tr>
<td>Alarm Status (STAT)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Reading (RDNG)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Valley (VALY)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Units (UNIT)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multipoint Address (ADDR)</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Transmit Time (TR.TM)</td>
<td>0016</td>
<td></td>
</tr>
<tr>
<td>Display Color (COLR):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Color (N.CLAR)</td>
<td>Green (GRN)</td>
<td></td>
</tr>
<tr>
<td>Alarm 1 Color (1.CLAR)</td>
<td>Red (RED)</td>
<td></td>
</tr>
<tr>
<td>Alarm 2 Color (2.CLAR)</td>
<td>Amber (AMBR)</td>
<td></td>
</tr>
</tbody>
</table>
PART 6
CE APPROVALS INFORMATION

This product conforms to the EMC directive 89/336/EEC amended by 93/68/EEC, and with the European Low Voltage Directive 72/23/EEC.

Electrical Safety EN61010-1:2001
Safety requirements for electrical equipment for measurement, control and laboratory.

Double Insulation
Pollution Degree 2

Dielectric withstand Test per 1 min
- Power to Input/Output: 2300Vac (3250Vdc)
- Power to Relays/SSR Output: 2300Vac (3250Vdc)
- Ethernet to Inputs: 1500Vac (2120Vdc)
- Isolated RS232 to Inputs: 500Vac (720Vdc)
- Isolated Analog to Inputs: 500Vac (720Vdc)
- Analog/Pulse to Inputs: No Isolation

Measurement Category I

Category I are measurements performed on circuits not directly connected to the Mains Supply (power). Maximum Line-to-Neutral working voltage is 50Vac/dc. This unit should not be used in Measurement Categories II, III, IV.

Transients Overvoltage Surge (1.2 / 50uS pulse)
- Input Power: 2500V
- Ethernet: 1500V
- Input/Output Signals: 500V

Immunity and Emissions requirements for electrical equipment for measurement, control and laboratory.
- EMC Emissions Table 4, Class B of EN61326
- EMC Immunity** Table 1 of EN61326

Note: **I/O signal and control lines require shielded cables and these cables must be located on conductive cable trays or in conduits. Furthermore, the length of these cables should not exceed 30 meters

Refer to the EMC and Safety installation considerations (Guidelines) of this manual for additional information.
Warranty/Disclaimer

NEWPORT Electronics, Inc. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from the date of purchase. In addition to NEWPORT’s standard warranty period, NEWPORT Electronics will extend the warranty period for four (4) additional years if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, or used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY / DISCLAIMER language, and additionally purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting NEWPORT:
1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.
NEWPORT is a registered trademark of NEWPORT Electronics, Inc.

© Copyright 2006 NEWPORT Electronics, Inc. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT Electronics, Inc.
For immediate technical or application assistance please call:

1-800-639-7678

Newport Electronics, Inc.
2229 South Yale Street • Santa Ana, CA • 92704 • U.S.A.
TEL: (714) 540-4914 • FAX: (203) 968-7311
Toll Free: 1-800-639-7678 • www.newportUS.com • e-mail:info@newportUS.com
ISO 9001 Certified

Newport Technologies, Inc.
976 Bergar • Laval (Quebec) • H7L 5A1 • Canada
TEL: (514) 335-3183 • FAX: (514) 856-6886
Toll Free: 1-800-639-7678 • www.newport.ca • e-mail:info@newport.ca

Newport Electronics, Ltd.
One Omega Drive • River Bend Technology Centre
Northbank, Irlam • Manchester M44 5BD • United Kingdom
Tel: +44 161 777 6611 • FAX: +44 161 777 6622
Toll Free: 0800 488 488 • www.newportuk.co.uk • e-mail: sales@newportuk.co.uk

Newport Electronics spol s.r.o.
Frystatska 184, 733 01 Karviná • Czech Republic
TEL: +420 59 6311899 • FAX: +420 59 6311114
Toll Free: 0800-1-66342 • www.newport.cz • e-mail: info@newport.cz

Newport Electronics GmbH
Daimlerstrasse 26 • D-75392 Deckenpfronn • Germany
TEL: 49 7056 9398-0 • FAX: 49 7056 9398-29
Toll Free: 0800 / 6397678 • www.newport.de • e-mail: sales@newport.de

Mexico and Latin America
FAX: 001 (203) 359-7807
En Español: 001 (203) 359-7803

NEWPORTnet™ On-Line Service
www.newportUS.com

Internet e-mail
info@newportUS.com

NEWPORT Electronics, Inc.