iSeries

iDRA Monitor
iDRA0x-AL Limit Alarm
DIN Rail Temperature/Process with Isolated Analog Output
Operator’s Manual

NEWPORT Electronics, Inc.
http://www.newportUS.com/i
Counters Frequency Meters Rate Meters Timers
PID Controllers Clock/Timers Totalizers
Printers Process Meters Strain Gauge
On/Off Timers Meters
Controllers Process Meters Voltmeters
Recorders Strain Gauge Multimeters
Relative Soldering Iron
Humidity Testers
Transmitters pH pens
Thermocouples pH Controllers
Thermistors pH Electrodes
Wire RTDs
Strain Gauge
Meters
Multimeters
Soldering Iron
Testers
pH pens
pH Controllers
pH Electrodes
RTDs
Thermowells
Flow Sensors

For Immediate Assistance
In the U.S.A. and Canada: 1-800-NEWPORT®
In Mexico: (95) 800-NEWPORT™
Or call your local NEWPORT Office.

NEWPORTnet™ On-Line Service Internet e-mail
www.newportUS.com info@newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

TRADEMARK NOTICE: Newman, Newport, Newport®, newportUS.com, and the “Meter Bezel Design” are trademarks of NEWPORT Electronics, Inc.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577; 6,243,021 / CANADA 2052599; 2052600 / ITALY 1249456; 1250938 / FRANCE BREVET No. 91 12756 / SPAIN 2039150; 2048066 / UK PATENT No. GB2 249 837; GB2 248 954 / GERMANY DE 41 34398 C2. The ® is a Trademark of OMEGA Engineering, Inc. Used Under License. Other US and International Patents pending or applied for.

This device is marked with the international caution symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.
TABLE OF CONTENTS

Part 1: Introduction ..2
 1.1 Description ...2
 1.2 Safety Considerations ..3
 1.3 Before You Begin ..4

Part 2: Setup ..5
 2.1 Optional Remote Programmer Front Panel View ..5
 2.2 Front Panel Connections ...6
 2.3 Electrical Installation ..7
 2.3.1 Power Connections ...7
 2.3.2 Thermocouple - Input Connection ...8
 2.3.3 Two / Three / Four Wire RTD-Hookup ..9
 2.3.4 Process Current - Wiring Hookup ...10
 2.3.5 Process Voltage - Wiring Hookup ...10
 2.3.6 Wiring Outputs - Wiring Hookup ..11

Part 3: Operation: Configuration Mode ...14
 3.1 Introduction ...14
 Turning your Instrument On for the First Time
 Buttons Functions in Configuration Mode
 3.2 Menu Configuration ...15
 3.2.1 ID Number ..16
 3.2.2 Set Points ...17
 3.2.3 Configuration Menu ..18
 3.2.4 Input Type Menu ..18
 Input Type (Thermocouple) ..19
 Input Type (RTD) ...20
 Input Type (Process) ..21
 3.2.5 Reading Configuration Menu ...22
 3.2.6 Analog Output (Retransmission) ..26
 3.2.7 Alarm 1 Menu (not available) ..28
 3.2.8 Alarm 2 Menu ...28
 3.2.9 Reading Adjust Menu/Field Calibration ...32
 3.2.10 ID Code Menu ...33
 3.2.11 Communication Options Menu ..35
 3.2.12 Display Color Selection Menu ..42

Part 4: Specifications ...45

Part 5: Factory Preset Values ...48

Part 6: CE Approval Information ...49
LIST OF FIGURES:

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Optional Remote Programmer Front Panel Display</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Input and Output Connections</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Main Power Connections</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Thermocouple Wiring Hookup</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Two/Three/Four-wire RTD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) RTD-1000 ohm and 500 ohm Wiring Hookup</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>b) RTD-100 ohm Wiring Hookup</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Process Current Wiring Hookup</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>(Internal and External Excitation)</td>
<td></td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Process Voltage Wiring Hookup</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(with Sensor Excitation and without Sensor Excitation)</td>
<td></td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>a) SSR Output – Wiring Hookup</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>b) Mechanical Relay Output – Wiring Hookup</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Pulse Output – Wiring Hookup</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Isolated Analog Output Wiring Hookup</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Snubber Circuits Wiring Hookup</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Typical Applications</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Communication Outputs:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) RS-232 Output – Wiring Hookup</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>b) RS-485 Output – Wiring Hookup</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Excitation Output</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow Chart for ID and Set Points Menu</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flow Chart for Configuration Menu</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Flow Chart for Input Type Menu</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Flow Chart for Reading Configuration Menu</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Flow Chart for Analog Output Retransmission</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Flow Chart for Alarm 2 Menu</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Flow Chart for Reading Adjust Menu/Field Calibration</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Flow Chart for ID Code Menu</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Flow Chart for Communication Option Menu</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Flow Chart for Display Color Selection Menu</td>
<td>42</td>
</tr>
</tbody>
</table>

LIST OF TABLES:

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Optional Remote Programmer Front Panel Annunciators</td>
<td>5</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Connectors</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Fuse Requirements</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>TC Wire Color Chart</td>
<td>8</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Button Function in Configuration Mode</td>
<td>14</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Conversion Table</td>
<td>25</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Input Properties</td>
<td>47</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Factory Preset Values</td>
<td>48</td>
</tr>
</tbody>
</table>
NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by following labels:

• NOTE
• WARNING or CAUTION
• IMPORTANT
• TIP

NOTE: Provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: Tells you about the risk of electrical shock.

CAUTION, WARNING or IMPORTANT: Tells you of circumstances or practices that can effect the instrument’s functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.
This device can be purchased as a controller, with outputs or as a signal conditioner.

- The iSeries offers unparalleled flexibility in process measurement. Each unit allows the user to select the input type, from 10 thermocouple types (J, K, T, E, R, S, B, C, N and J DIN), Pt RTDs (100, 500 or 1000 Ω, with either 385 or 392 curve), DC voltage, or DC current. The voltage/current inputs are fully scalable to virtually all engineering units, with selectable decimal point, perfect for use with pressure, flow or other process input.

- The standard features include isolated analog voltage and current output. Options include programmable RS-232 or RS-485 serial communication or excitation. Analog Output is fully scaleable and configured as retransmission to follow your display. Universal power supply accepts 90 to 240 Vac. Low voltage power option accepts 24 Vac or 20 to 36 Vdc.

- The optional Remote Programmer features a large, three color programmable display with capability to change a color every time the Alarm is triggered.
1.2 Safety Considerations

This device is marked with the International Caution Symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

This instrument is a panel mount device protected in accordance with EN 61010-1:2001, electrical safety requirements for electrical equipment for measurement, control and laboratory. Installation of this instrument should be done by qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the main supply cord.

Furthermore, to provide protection against excessive energy being drawn from the main supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!
1.3 Before You Begin

Inspecting Your Shipment:

Remove the packing slip and verify that you have received everything listed. Inspect the container and equipment for signs of damage as soon as you receive the shipment. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent. The carrier will not honor damage claims unless all shipping material is saved for inspection. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

Customer Service:

If you need assistance, please call the nearest Customer Service Department, listed in this manual.

Manuals, Software:

The latest Operation and Communication Manual as well as free configuration software are available at the website listed on the cover page of this manual or on the CD-ROM enclosed with your shipment.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

The following steps in this manual for configuring your device are explained by using the optional Remote Programmer Display (iDRP). If you have the Serial Communications Option (-C24) you can easily configure the controller on your computer or on-line.

To Reset the Meter:

When the monitor is in the "MENU" Mode, push once to direct monitor one step backward of the top menu item.

Push twice to reset monitor, prior to resuming "Run" Mode except after "Set Points" and "Alarms", that will go to the "Run" Mode without resetting the monitor.
PART 2
SETUP

2.1 Optional Remote Programmer Front Panel

Refer to the Quick Start Guide for assembly and disassembly instructions.

Figure 2.1 Optional Remote Programmer Front Panel Display

Table 2.1
Optional Remote Programmer Front Panel Annunciators

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setpoint 1/ Alarm 1 indicator (inactive)</td>
</tr>
<tr>
<td>2</td>
<td>Setpoint 2/ Alarm 2 indicator</td>
</tr>
<tr>
<td>°C</td>
<td>°C unit indicator</td>
</tr>
<tr>
<td>°F</td>
<td>°F unit indicator</td>
</tr>
<tr>
<td></td>
<td>Changes display to Configuration Mode and advances through menu items*</td>
</tr>
<tr>
<td></td>
<td>Used in Program Mode and Peak Recall*</td>
</tr>
<tr>
<td></td>
<td>Used in Program Mode and Valley Recall*</td>
</tr>
<tr>
<td></td>
<td>Accesses submenus in Configuration Mode and stores selected values*</td>
</tr>
</tbody>
</table>

* See Part 3 Operation: Configuration Mode
2.2 Front Panel Connections
The front panel connections are shown in Figures 2.2 and 2.3.

Figure 2.2 Input and Output Connections

Table 2.2 Connectors

<table>
<thead>
<tr>
<th></th>
<th>POWER</th>
<th>INPUT</th>
<th>OUTPUT 1</th>
<th>OUTPUT 2</th>
<th>OUTPUT 3</th>
<th>OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC/DC Power Connector: All models</td>
<td>Input Connector: All models TC, PR (Process), RTD</td>
<td>Not available.</td>
<td>Based on one of the following models: Relay SPDT, Solid State Relay, Pulse, For -AL Alarm Option only</td>
<td>Isolated Analog (Output Voltage and Current)</td>
<td>Based on one of the following models: RS-232C and RS-485 Excitation</td>
</tr>
</tbody>
</table>

Note: Output 2 is for -AL Alarm Option only.
2.3 Electrical Installation

2.3.1 Power Connections

Caution: Do not connect power to your device until you have completed all input and output connections. Failure to do so may result in injury!

Connect the main power connections as shown in the figure below.

![Main Power Connections Diagram](image)

Table 2.3 Fuse Requirement (see specifications)

<table>
<thead>
<tr>
<th>FUSE</th>
<th>Connector</th>
<th>Output Type</th>
<th>For 115Vac</th>
<th>For 230Vac</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUSE 1</td>
<td>Power</td>
<td>N/A</td>
<td>100 mA(T)</td>
<td>63 mA(T)</td>
<td>63 mA(T)</td>
</tr>
<tr>
<td>FUSE 2</td>
<td>Power</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>400 mA(T)</td>
</tr>
</tbody>
</table>

For the low voltage power option, in order to maintain the same degree of protection as the standard high voltage input power units (90 - 240 Vac), always use a Safety Agency Approved DC or AC source with the same Overvoltage Category and pollution degree as the standard AC unit (90 - 240 Vac).

The Safety European Standard EN61010-1 for measurement, control, and laboratory equipment requires that fuses must be specified based on IEC127. This standard specifies for a Time-lag fuse, the letter code “T”. The above recommended fuses are of the type IEC127-2-sheet III. Be aware that there are significant differences between the requirements listed in the UL 248-14/CSA 248.14 and the IEC 127 fuse standards. As a result, no single fuse can carry all approval listings. A 1.0 Amp IEC fuse is approximately equivalent to a 1.4 Amp UL/CSA fuse. It is advised to consult the manufacturer’s data sheets for a cross-reference.

* See Specification Section
2.3.2 Thermocouple Input

The figure below shows the wiring hookup for any thermocouple type. **For example**, for Type K hookup, connect the yellow wire to the "2" terminal and the red wire to the "1(-)" terminal.

When configuring your controller, select **Thermocouple** and **Thermocouple Type** in the Input Type menu (see **Part 3**).

![Thermocouple Wiring Hookup](image)

Figure 2.4 Thermocouple Wiring Hookup

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Input Connector</th>
<th>Jacket (external insulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Terminal 1 (-)</td>
<td>Terminal 2 (+)</td>
</tr>
<tr>
<td>J</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>K</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>T</td>
<td>Red</td>
<td>Blue</td>
</tr>
<tr>
<td>E</td>
<td>Red</td>
<td>Purple</td>
</tr>
<tr>
<td>N</td>
<td>Red</td>
<td>Orange</td>
</tr>
<tr>
<td>R</td>
<td>Red</td>
<td>Black</td>
</tr>
<tr>
<td>S</td>
<td>Red</td>
<td>Black</td>
</tr>
<tr>
<td>B</td>
<td>Red</td>
<td>Gray</td>
</tr>
</tbody>
</table>

Table 2.4 TC Wire Color Chart

If the input wires of the meter get disconnected or broken, it will display **OPEN** "Input (+) Open" message. For safety purpose you may want to set up your alarm to be triggered when input is open. See Alarm 1 and 2 chapters for details.
2.3.3 Two/Three/Four-Wire RTD

The figures below show the input connections and input connector jumpers (shown in bold lines) required to hookup a 2-, 3- or 4-wire RTD.

Figure 2.5 a) RTD-1000 ohm and 500 ohm Wiring Hookup

Figure 2.5 b) RTD-100 ohm Wiring Hookup

The **two-wire** connection is simplest method, but does not compensate for lead-wire temperature change and often requires calibration to cancel lead-wire resistance offset.

The **three-wire** connection works best with RTD leads closely equal in resistance. The device measures the RTD, plus upper and lower lead drop voltage and the subtracts twice the measured drop in the lower supply current lead producing excellent lead-resistance cancellation for balanced measurements.

The **four-wire** RTD hookup is applicable to unbalanced lead resistance and enables the device to measure and subtract the lead voltage, which produces the best lead-resistance cancellation.

When configuring your controller, select **RTD Type** and **RTD value** in the Input Type menu (see **Part 3**).

If the input wires of the meter get disconnected or broken, it will display "**+OPEN** "Input (+) Open" message except in case of 500/1000 Ω 2-wire RTD. In this case the display shows "**-OPEN** "Input (-) Open" message. For safety purpose you may want to set up your alarm to be triggered when input is open. See Alarm 1 and 2 chapters for details.
2.3.4 Process Current

The figure below shows the wiring hookup for Process Current 0 – 20 mA.

![Figure 2.6 Process Current Wiring Hookup (Internal and External Excitation)](image)

When configuring your instrument, select **Process Type** in the Input Type Menu (see Part 3).

2.3.5 Process Voltage

The figure below shows the wiring hookup for Process Voltage 0 – 100 mV, 0 – 1 V, 0 – 10 V.

![Figure 2.7 Process Voltage Wiring Hookup (with Sensor Excitation and without Sensor Excitation)](image)

RL - Voltage limited resistor, which allows to convert 24 Vdc internal excitation voltage to the appropriate process input value. For instance: if the potentiometer value is equal to 10 kΩ, the minimum **RL** is 14 kΩ for 10 V process input.

When configuring your instrument, select **Process Type** in the Input Type Menu (see Part 3).
2.3.6 Wiring Outputs

This meter, if ordered with the -AL Alarm Option has one factory installed output, located at “Output 2”. The SPDT Mechanical Relay, SPST Solid State Relay and Pulse Output Connection are shown below.

The standard factory installed Isolated Analog Output (retransmission) voltage and current connections are shown below.

Figure 2.8

a) SSR Outputs Wiring Hookup

b) Mechanical Relay Wiring Hookup

Figure 2.9 Pulse Outputs Wiring Hookup

The standard factory installed Isolated Analog Output (retransmission) voltage and current connections are shown below.

Figure 2.10 Isolated Analog Output Wiring Hookup.
This device has snubber circuits designed to protect the contacts of the mechanical relays when it switches to inductive loads (i.e., solenoids, relays). These snubbers are internally connected between the Common (C) and Normally Open (NO) relay contacts of Output 2.

If you have an inductive load connected between Common (C) and Normally Closed (NC) contacts of the mechanical relays and you want to protect them from the rush current during the switching period, you have to connect an external snubber circuit between Common (C) and Normally Closed (NC) contacts as indicated in the figure below.

![Figure 2.11 Snubber Circuits Wiring Hookup](image1)

Figure 2.11 Snubber Circuits Wiring Hookup

- **dc CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH dc VOLTAGE SSR DRIVER OUTPUT**
 - TEMPERATURE CONTROLLER
 - CONTROL SIDE
 - LOAD SIDE
 - Heater

- **ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH MECHANICAL RELAY OUTPUT**
 - TEMPERATURE CONTROLLER
 - CONTROL SIDE
 - LOAD SIDE
 - Heater

- **ac CONTROLLED SSR USED WITH TEMPERATURE CONTROLLER WITH TRIAC OUTPUT**
 - TEMPERATURE CONTROLLER
 - CONTROL SIDE
 - LOAD RESISTOR
 - Heater

Figure 2.12 Typical Applications
This device may have a programmable serial communication output. The RS-232 and RS-485 Output Connections are shown below.

Figure 2.13 Serial Communication
a) RS-232 Output Wiring Hookup
b) RS-485 Output Wiring Hookup

This device has built-in excitation. The connections are shown below.

Figure 2.14 Excitation Output

Note: Excitation is not available if communication (-C24) or low power (-DC) option is installed.
PART 3
OPERATION: Configuration Mode
3.1 Introduction

The instrument has two different modes of operation. The first, Run Mode, is used to display values for the Process Variable, and to display or clear Peak and Valley values. The other mode, Menu Configuration Mode, is used to navigate through the menu options and configure the instrument. Part 3 of this manual will explain the Menu Configuration Mode. For your instrument to operate properly, the user must first "program" or configure the menu options.

Turning your Instrument On for the First Time

The device becomes active as soon as it is connected to a power source. It has no On or Off switch. The device at first momentarily shows the software version number, followed by reset RST, and then proceeds to the Run Mode.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

If you have the Serial Communications Option you can easily configure the controller on your computer.

Table 3.1 Button Function in Configuration Mode

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>To enter the Menu, the user must first press button. Use this button to advance/navigate to the next menu item. The user can navigate through all the top level menus by pressing button. While a parameter is being modified, press button to escape without saving the parameter.</td>
</tr>
<tr>
<td>(UP)</td>
<td>Press the up button to scroll through “flashing” selections. When a numerical value is displayed press this key to increase value of a parameter that is currently being modified. Holding the button down for approximately 3 seconds will speed up the rate at which the set point value increments. In the Run Mode press button causes the display to flash the PEAK value – press again to return to the Run Mode.</td>
</tr>
<tr>
<td>(DOWN)</td>
<td>Press the down button to go back to a previous Top Level Menu item. Press this button twice to reset the monitor to the Run Mode. When a numerical value is flashing (except set point value) press button to scroll digits from left to right allowing the user to select the desired digit to modify. When a setpoint value is displayed press button to decrease value of a setpoint that is currently being modified. Holding the button down for approximately 3 seconds will speed up the rate at which the setpoint value is decremented. In the Run Mode press button causes the display to flash the VALLEY value – press again to return to the Run Mode.</td>
</tr>
<tr>
<td>ENTER</td>
<td>Press the enter button to access the submenus from a Top Level Menu item. Press button to store a submenu selection or after entering a value — the display will flash a STRD message to confirm your selection. To reset flashing Peak or Valley press button.</td>
</tr>
</tbody>
</table>

Reset: Except for Alarms, modifying any settings of the menu configuration will reset the instrument prior to resuming Run Mode.
3.2 Menu Configuration

Figure 3.1 Flow Chart for ID and Set Points
3.2.1 ID Number

SEE ID MENU SELECTION IN CONFIGURATION SECTION FOR ENABLE/DISABLE OR CHANGE ID CODE.

If ID Code is Disabled or set as Default 0000 the menu will skip ID step to Set Point Menu.

If ID Code is set to Full Security Level and user attempts to enter the Main Menu, they will be prompted for an ID Code.

If ID Code is set to Setpoint/ID Security Level and user attempts to enter the Configuration Menu, they will be prompted for an ID Code.

ENTERING YOUR NON-DEFAULT FULL SECURITY ID NUMBER.

Press 1) Display shows Id.
Press 2) Display advances to ____.
Press 3) Press ↑ to increase digit 0-9. Press → to activate next digit (flashing). Continue to use ↑ and → to enter your 4-digit ID code.
Press 4) If the correct ID code is entered, the menu will advance to the Setpoint 1 Menu, otherwise an error message ERR will be displayed and the instrument will return to the Run Mode.

To change ID Code, see ID Menu in the Configuration section.

ENTERING YOUR NON-DEFAULT SETPOINT/ID SECURITY ID NUMBER.

Press 5) Display shows SP2 Setpoint 2 Menu.
Press 6) Display shows Id ID Code Menu.
Press 7) Display advances to ____.
Press 8) Use ↑ and → to change your ID Code.
Press 9) If correct ID Code is entered, the display will advance to the INPT Input Menu, otherwise the error message ERR will be displayed and the instrument will return to the Run Mode.

To prevent unauthorized tampering with the setup parameters, the instrument provides protection by requiring the user to enter the ID Code before allowing access to subsequent menus. If the ID Code entered does not match the ID Code stored, the instrument responds with an error message and access to subsequent menus will be denied.

Use numbers that are easy for you to remember. If the ID Code is forgotten or lost, call customer service with your serial number to access and reset the default to 0000.
3.2.2 Set Points

SETPOINT 2:

For this model with isolated Analog Output the Setpoint 1 is inactive.

Press 1) Press \(\bigcirc \), if necessary until \(\text{SP2} \) prompt appears.
Press 2) Display shows previous value of “Setpoint 2” with 1\(^{st} \) digit flashing.
Press \(\bigcirc \) & \(\bigtriangledown \) 3) Press \(\bigcirc \) and \(\bigtriangledown \) to increase or decrease Setpoint 2 respectively.

Holding \(\bigcirc \) & \(\bigtriangledown \) buttons down for approximately 3 seconds will speed up the rate at which the setpoint value increments or decrements.

Press 4) Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{CNFG} \) only, if a change was made, otherwise press \(\bigcirc \) to advance to \(\text{CNFG} \) Configuration Menu.
3.2.3 Configuration Menu

![Flow Chart for Configuration Menu]

Enter Configuration Menu:

1) Press \(\Phi \), if necessary, until \text{CNFG} \ prompt appear.
2) Display advance to \text{INPT} \ Input Menu.
3) Pressing and releasing \(\Phi \) to scroll through all available menus of Configuration section.

3.2.4 Input Type Menu

![Flow Chart for Input Type Menu]
Input Type (Thermocouple)

ENTER INPUT TYPE MENU:

1) Press ø, if necessary, until \textit{CFG} prompt appears.
2) Display advance to \textit{INPT} Input Menu.
3) Display flashes \texttt{T.c}, \texttt{RTD} or \texttt{PROC} (Thermocouple, RTD or Process). If the displayed input type is \texttt{T.c}, press ø to skip to step 6 (\texttt{T.c} stops flashing).

THERMOCOUPLE SUBMENU:

4) Scroll through the available selection to \texttt{T.c} (flashing).
5) Display shows \texttt{STRD} stored message momentarily and then \texttt{T.c} (not flashing).
6) Display flashes previous thermocouple type selection. i.e. \texttt{J} (see below for types).
7) Scroll through the available thermocouple types to the selection of your choice.
8) Display shows \texttt{STRD} stored message momentarily and then advances to the \texttt{RDG} Reading Configuration Menu.

\textbf{Note:} Use the Input Type (Thermocouple) (RTD) or (Process) and verify your Electrical Installation (see \textbf{Section 2.3}). See the following pages for (TC), (RTD), (Process) menus.

\textbf{Display:} J K T E N DIN J R S B C
Input Type (RTD)

ENTER INPUT TYPE MENU:

Press 1) Press , if necessary, until prompt appears.
Press 2) Display advances to Input Menu.
Press 3) Display flashes or (Thermocouple, RTD or Process). If the displayed input type is RTD, press to skip to step 6 (RTD stops flashing).

RTD SUBMENU:

Press 4) Scroll through the available selection to RTD (flashing).
Press 5) Display shows stored message momentarily and then RTD (not flashing).
Press 6) Display flashes previous RTD type selection i.e. 392.2 (see below for RTD types selection).
Press 7) Scroll through the available RTD types to the selection of your choice.
Press 8) Display shows stored message momentarily and then advances to RTD RTD value.

RTD Types: 392 385 Two, Three or Four-wire
Display: 392.2, 392.3, 392.4, 385.2, 385.3, 385.4

Note: Last digit indicates: 2-, 3- or 4-wire input.

RTD VALUE SUBMENU:

Press 9) Display flashes previous RTD value selection i.e. 100_ (see below for RTD value selection).
Press 10) Scroll through the available RTD values to the selection of your choice.
Press 11) Display shows stored message momentarily and then advances to Reading Configuration Menu.

RTD Values: 100 ohm 500 ohm 1000 ohm
Display: 100_ 500_ 1000
Input Type (Process)

ENTER INPUT TYPE MENU:

Press ☀ 1) Press ☀, if necessary, until CHG prompt appears.
Press ☀ 2) Display advance to TYPE Input Menu.
Press ☀ 3) Display flashes T.c, RTD or PROC (Thermocouple, RTD or Process). If the displayed input type is PROC, press ☀ to skip to step 6 (PROC stops flashing).

PROCESS SUBMENU:

Press ☀ 4) Scroll through the available selection to PROC (flashing).
Press ☀ 5) Display shows STRD stored message momentarily and then PROC (not flashing).
Press ☀ 6) Display flashes previous Process type selection. i.e. 0 - 10 (see below for Process types selection).
Press ☀ 7) Scroll through the available Process types to the selection of your choice.
Press ☀ 8) Display shows STRD stored message and then advances to RDG Reading Configuration Menu.

Process Types: 100 mV 1 V 10 V 0 – 20 mA
Display: 0-0.1 0-1.0 0-10 0-20

For 4-20 mA Input select 0-20 mA and adjust the Input/Reading accordingly. To adjust 4-20 mA input, see example under Input/Reading Submenu.
3.2.5 Reading Configuration Menu

Figure 3.4 Flow Chart for Reading Configuration Menu

ENTER READING CONFIGURATION MENU:

Press 1) Press \(\text{DEC} \), if necessary, until \(\text{CNFG} \) prompt appears.
Press 2) Display advances to \(\text{INPT} \) Input Menu.
Press 3) Display advances to \(\text{RDG} \) Reading Configuration Menu.
Press 4) Display advances to \(\text{DEC} \) Decimal Point.

DECIMAL POINT SUBMENU:

Press 5) Display flashes previous selection for Decimal location.
Press 6) Scroll though the available selections and choose Decimal location: \(\text{FFFF} \) or \(\text{FFF.F} \) (also \(\text{FF.FF} \) and \(\text{F.FFF} \) — if \(\text{PROC} \) Process type was selected in the Input Type Menu).
Press 7) Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{TEMP} \) Temperature Unit.

Decimal Point for Process Input Type is passive.
TEMPERATURE UNIT SUBMENU:

Press [8]) Display flashes previous Temperature Unit selection.
Press [9]) Scroll though the available selections to the Temperature Unit of your choice: °F or °C.
Press [10]) Display shows stored message momentarily and then advances to FILTER Filter Constant.

FILTER CONSTANT SUBMENU:

Press [12]) Scroll though the available selections: 0001, 0002, 0004, 0008, 0016, 0032, 0064, 0128. - Default is 0004
Press [13]) Display shows stored message momentarily only, if a change was made, otherwise press [7] to advance to the next menu.

If Process was selected in the Input Type Menu the display will advance to Input/Reading Submenu, otherwise the display advances to the Alarm Menu.

The Filter Constant Submenu allows the user to specify the number of readings stored in the Digital Averaging Filter.

For PID control select filter value 0001-0004. A filter value of 2 is approximately equal to 1 second RC low pass time constant.
Reading Configuration (If Process was selected)

INPUT/READING (SCALE AND OFFSET) SUBMENU:

Input Voltage or Current can be converted or scaled into values appropriate for the process or signal being measured. So, a reading may be displayed, for example, in units of weight or velocity instead of in amperes or volts.

The instrument determines Scale and Offset values based on two user-provided input values entered with the corresponding readings. Note that IN_1 Input 1 and IN_2 Input 2 are represented and entered as a product of the input voltage/current and the conversion number from the Table 3.2.

The following instructions include details for a specific scenario in which a 4-20 mA input (in the 20 mA Process Mode) is to be represented as a measurement of 0-100 percent.

Press d_14) Press d at the $\text{IN}_1 \text{RD}$ prompt. Display shows IN_1 Input 1 Submenu.

Press d_15) Display shows Input 1 value with 1st digit flashing.

Press d_16) Use a and v buttons to enter IN_1 value. The IN_1 value = min. input value * conversion number.

Note: Disregard the position of the decimal point (2000 counts may actually appear as 2000, 200.0, 20.00, or 2.000).

Example: 4 mA as 4(mA) x 500 = 2000.

Press d_17) Display advances to RD_1 Reading 1 Submenu.

Press d_18) Use a and v buttons to enter RD_1 value. This value represents IN_1 in terms of some meaningful engineering units. To show the 4 mA as zero percent enter RD_1 value = 0000.

Example: RD_1 value = 0000.

Press d_19) Display IN_2 Input 2 Submenu.

Press d_20) Display shows Input 2 value with 1st digit flashing. The IN_2 value = max. input value * conversion number.

Example: 20(mA) x 500 = 10000 (9999).

Press d_21) Use a and v buttons to enter IN_2 value.

Press d_22) Display advances to RD_2 Reading 2 Submenu.

Press d_23) Use a and v buttons to enter RD_2 value. Example: RD_2 value = 0100.

Press d_24) Display flashes STRD stored message momentarily and then advances to ALR_1 only, if change was made, otherwise press d to advance to ALR_1 Alarm Menu.
Conversion number is a coefficient of conversion between input values and real full display range (10000 counts, shown as 9999). See Table 3.2 below for proper conversion number.

Table 3.2 Conversion Table

<table>
<thead>
<tr>
<th>RANGE</th>
<th>CONVERSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>$\frac{10000}{100 \times 1} = 100$</td>
</tr>
<tr>
<td>1 V</td>
<td>$\frac{10000}{1000 \times 1} = 10$</td>
</tr>
<tr>
<td>10 V</td>
<td>$\frac{10000}{1000 \times 10} = 1$</td>
</tr>
<tr>
<td>0 -20 mA</td>
<td>$\frac{10000}{20 \times 1} = 500$</td>
</tr>
</tbody>
</table>

Example =

0 - 1 V = 0 - 100.0
Inp 1 = 0
Rd 1 = 0
Inp 2 = 9999
Rd 2 = 100.0
3.2.6 Analog Output (Retransmission)

Figure 3.5 Flow Chart for Analog Output (Retransmission)

ENTER ANALOG OUTPUT MENU:

Press 1) Press if necessary, until CNFG prompt appears.
Press 2) Display advances to INPT Input Menu.
Press 3) Press if necessary, until Display advances to ANLG Analog Output Menu.
Press 4) Display advances to Analog Output CURR or VolT Current/Voltage Submenu and flashes the previous selection.

CURRENT/VOLTAGE SUBMENU:

Press 5) Display flashes CURR Current or VolT Voltage.
Press 6) Scroll through the available selection: Current or Voltage. (Example VolT).
Press 7) Display shows STRD stored message momentarily and then advances to RD! Submenu only if it was changed, otherwise press to advance to RD! Reading 1 Submenu.

READING 1:

Press 8) Display flashes 1st digit of previous “Reading 1” value.
Press & 9) Enter “Reading 1” value. (Example 0000).
Press 10) Display advances to OUT.1 Out 1 Submenu.

OUT 1:

Press 11) Display flashes 1st digit of previous “Out 1” value.
Press & 12) Enter “Out 1” value. (Example 00.00).
Press 13) Display advances to RD!2 Reading 2 Submenu.
READING 2:

Press 🔄 14) Display flashes 1st digit of previous “Reading 2” value.
Press 🛠️ & 🛠️ 15) Enter “Reading 2” value. (Example 9999).
Press 🔄 16) Display advances to OUT.2 Out 2 Submenu.

OUT 2:

Press 🔄 17) Display flashes 1st digit of previous “Out 2” value.
Press 🛠️ & 🛠️ 18) Enter “Out 2” value. (Example 10.00).
Press 🔄 19) Display advances to the ALR.2 Alarm 2 Menu.

Note: The above example is for 0-10 V output of the entire range of the Process Input and Analog Output. For 0-20 mA output you need to set “Analog Type” to Current and OUT 2 to 20.00.
3.2.7 Alarm 1

For this model with Isolated Analog Output, Alarm 1 is inactive.

3.2.8 Alarm 2

Figure 3.6 Flow Chart for Alarm 2

ENTER ALARM MENU:

Press 1) Press 2, if necessary, until CNFG prompt appears.
Press 2) Display advances to INPT Input Menu.
Press 3) Press 2, if necessary, until Display advances to ALR2 Alarm Menu.
Press 4) Display advances to the ABSOLUTE Absolute/Deviation Submenu.
ALARM ABSOLUTE/DEVIATION SUBMENU:

Press 5) Display flashes previous selection. Press ▲ to Absolute or ▼ Deviation.

Press 6) Display shows stored message momentarily and then advances to Alarm Latch/Unlatch Submenu.

Absolute Mode allows Alarm to function independently from Setpoint 1. If the process being monitored does not change often, then "Absolute" Mode is recommended.

Deviation Mode allows changes to Setpoint 1 to be made automatically to Alarm. Deviation Mode is typically the ideal mode if the process temperature changes often. In Deviation Mode, set Alarm a certain number of degrees or counts away from Setpoint 1 — this relation remains fixed even if Setpoint 1 is changed.

ALARM 2 LATCH/UNLATCH SUBMENU:

Press 7) Display flashes previous selection. Press ▲ to Latched or ▼ Unlatched.

Press 8) Display shows stored message momentarily and then advances to Contact Closure Submenu.

Latched Mode: Relay remains "latched" until reset. To reset already latched alarm, select Alarm Latch and press Max twice (i.e. Unlatch and then back to Latch) or from a Run Mode, push twice to put the instrument in Standby Mode and then push one more time to return to the Run Mode.

Unlatched Mode: Relay remains latched only as long as the alarm condition is true.
ACTIVE SUBMENU:

Press 9) Display flashes previous selection. Press ▲ to scroll through the available selections: Above, Below, Hi/Low and Band. (Band is active if Deviation was selected).

Press 10) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press ◀ to advance to Alarm Low Value Submenu.

Above: Alarm 2 condition triggered when the process variable is greater than the Alarm Hi Value (Low value ignored).

Below: Alarm 2 condition triggered when the process variable is less than the Alarm Low Value (Hi value ignored).

Hi/Low: Alarm 2 condition triggered when the process variable is less than the Alarm Low Value or above the Hi Value.

Band: Alarm 2 condition triggered when the process variable is above or below the "band" set around Setpoint 2. Band equals Hi Value (Low Value ignored). A "band" is set around the Setpoint by the instrument only in the "Deviation" Mode. The Band for the AL 2 would be following the Setpoint 2 value. The Band or the Deviation Value should be entered under:

- AL2 High (if they want Alarm 2)
- AL Low value is ignored in the Band mode.

Example: if customer requires a Deviation Value of ±10 degrees around a setpoint (using Output 2 as alarm)

Output 2: disabled (this enables the Alarm 2)
Alarm 2: - Deviation
Contact Closure type: Deviation---Band
AL2 High: 10 (Band they want around Setpoint 2)
ALARM LOW VALUE SUBMENU:

Press 11) Display flashes 1st digit of previous value. Use ▲ and ▼ to enter new value.
Press ▲ & ▼ 12) Use ▲ and ▼ to enter Alarm Low Value.
Press 13) Display shows storage message momentarily and then advances to AL.R.H only, if it was changed, otherwise press ◀ to advance to AL.R.H Alarm Hi Value Submenu.

ALARM HI VALUE SUBMENU:

Press 14) Display flashes 1st digit of previous value. Use ▲ and ▼ to enter new value.
Press ▲ & ▼ 15) Use ▲ and ▼ to enter Alarm Hi Value.
Press 16) Display shows stored message momentarily and then advances to the next menu only, if it was changed, otherwise press ◀ to advance to the next menu.
3.2.9 Reading Adjust Menu / Field Calibration

ENTER READING ADJUST MENU:

Press 1) Press , if necessary, until CNFG prompt appears.
Press 2) Display advances to INPT Input Menu.
Press 3) Press , if necessary, until Display advances to R.ADJ Reading Adjust Menu.

READING ADJUST VALUE SUBMENU:

Press 4) Display flashes 1st digit of previous Reading Adjust value.
Press 5) Press and buttons to enter a new Reading Adjust value (-1999 to 9999).
Press 6) Display shows stored message momentarily and then advances to the Menu.

Reading Offset Adjust allows the user to fine tune a minor error of the transducer, however some applications may require a large offset adjust. (Displayed Process Value = Measured Process Value ±R.ADJ).

Reading Adjust value is adjustable between -1999 to 9999.

THERMOCOUPLE FIELD CALIBRATION SUBMENU:

CAUTION: Do not perform the following steps until you fully understand this entire section.

Note: RTD and Process are perfectly calibrated. This section is applicable to Thermocouple (TC) calibration only.

Be sure that the TC being used to calibrate the meter is of the type selected in the TC submenu. Place the TC in an ice-bath (or other 0°C / 32°F environment). In ambient temperature conditions: connect the TC to the meter, apply power to the meter.

CAUTION: Do not proceed with TC calibration unless the above conditions have been in effect for at least one hour.

Press 7) Display shows .
Press 8) Display shows flashing .
Press 9) Display will still show flashing .
Press 10) Display shows (meaning Calibration is complete)

* If you accidently engage the flashing (CAL° alert) simply re-press the last button you pressed, to avoid unintentionally mis-calibrating your meter.
3.2.10 ID CODE

Figure 3.8 Flow Chart for ID Code Menu

ENTER ID CODE MENU:

Press 1) Press , if necessary, until CNFG prompt appears.
Press 2) Display advances to INPT Input Menu.
Press 3) Press , if necessary, until Display advances to ID ID Code Menu.

ENTERING OR CHANGING YOUR (NON-DEFAULT) ID CODE:

Press 4) Display advances to ___ with 1st under score flashing.
Press 5) Press and to enter your 4-digit “ID Code” number.

If entered “ID Code” is incorrect display shows Error message momentarily and then skips to the Run Mode.

Press 7) Display flashes the first digit of previous entered “ID Code” number.
Press 8) Press and buttons to enter your new “ID Code” number.
Press 9) Display shows stored message momentarily and then advances to the Full Security Submenu.
ENTERING OR CHANGING YOUR (DEFAULT) ID CODE:

Enter Id menu (Repeat steps from 1 to 3).

Press
10) Display advances to CH, Id Change ID Code Submenu.

Press
11) Display shows 0000 message with flashing 1st digit.

If you want to change your default “ID Code” you can do it now, otherwise press and menu will skip to FULL Full Security Submenu.

Press & 12) Press and buttons to enter your new “ID Code” number.

Press
13) Display shows STRd stored message momentarily and then advances to FULL Full Security Submenu.

FULL SECURITY LEVEL SUBMENU:

Press
14) Display flashes ENBL Enable or DNBL Disable.

Press
15) Scroll through the available selections: “Enable” or “Disable”.

Press
16) Display shows STRd stored message momentarily and then advances to SP,Id Setpoint/ID Submenu.

If "Full" Security Level is "Enabled" and the user attempts to enter the Main Menu, they will be prompted for an ID Code. The ID Code should be correct to enter the instrument Menu item.

SETPOINT/ID SECURITY LEVEL SUBMENU:

This Security Level can be functional only if FULL Security Level is Disabled.

Press
17) Display flashes ENBL Enable or DNBL Disable.

Press
18) Scroll through the available selections: “Enable” or “Disable”.

Press
19) Display shows STRd stored message momentarily and then advances to COMM Communication Submenu.

If "Setpoint/ID" Security Level is "Enabled" and the user attempts to advance into the CFG Configuration Menu, he will be prompted for ID Code number. The ID Code should be correct to proceed into the Configuration Menu, otherwise display will show an Error and skip to the Run Mode.

If “Full” and “Setpoint/ID” Security Levels are "Disabled", the ID code will be “Disabled” and user will not be asked for ID Code to enter the Menu items (“ID” Submenu will not show up in “ID/Setpoint” Menu).
3.2.11 COMMUNICATION OPTION

Purchasing the device with Serial Communications permits an instrument to be configured or monitored from an IBM PC compatible computer using software available at the website listed on the cover of this manual or on the CD-ROM enclosed with your shipment. For complete instructions on the use of the Communications Option, refer to the Serial Communications Reference Manual.

Figure 3.9 Flow Chart for Communication Option
ENTER COMMUNICATION OPTION MENU:

Press ⍋ 1) Press ⍋, if necessary, until CNFG prompt appears.
Press ⍋ 2) Display advances to INPT Input Menu.
Press ⍋ 3) Press ⍋, if necessary, until Display advances to COMM Communication Options Menu.
Press ⍋ 4) Display advances to C.PAR Communication Parameters Submenu.

If Communication Option is not installed, the display shows NONE and skips to the Color Display Menu.

COMMUNICATION PARAMETERS SUBMENU:

Allows the user to adjust Serial Communications Settings of the instrument. When connecting an instrument to a computer or other device, the Communications Parameters must match. Generally the default settings (as shown in Section 5) should be utilized.

Press ⍋ 5) Display advances to baud Baud Submenu.

BAUD SUBMENU:

Press ⍋ 6) Display flashes previous selection for baud value.
Press ⍋ 7) Scroll through the available selections: 300, 600, 1200, 2400, 4800, 9600, 19.2K.
Press ⍋ 8) Display shows strd stored message momentarily and then advances to PRTY only, if it was changed, otherwise press ⍋ to advance to data Parity Submenu.

PARITY SUBMENU:

Press ⍋ 9) Display flashes previous selection for “Parity”.
Press ⍋ 10) Scroll through the available selections: NO, ODD, EVEN.
Press ⍋ 11) Display shows strd stored message momentarily and then advances to data only, if it was changed, otherwise press ⍋ to advance to data Data Bit Submenu.

DATA BIT SUBMENU:

Press ⍋ 12) Display flashes previous selection for “Data Bit”.
Press ⍋ 13) Scroll through the available selections: 7-BIT, 8-BIT.
Press ⍋ 14) Display shows strd stored message and then advances to stop only, if it was changed, otherwise press ⍋ to advance to stop Stop Bit Submenu.
STOP BIT SUBMENU:

Press 15) Display flashes previous selection for “Stop Bit”.
Press 16) Scroll through the available selections: 1-BIT, 2-BIT.
Press 17) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Bus Format Submenu.

BUS FORMAT SUBMENU:

Determines Communications Standards and Command/Data Formats for transferring information into and out of the instrument via the Serial Communications Bus. Bus Format submenus essentially determine how and when data can be accessed via the Serial Communications of the device.

MODBUS PROTOCOL SUBMENU:

Press 19) Display flashes previous selection for Modbus.
Press 20) Scroll through the available selections: NO, YES.
Press 21) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Line Feed submenu.

To select iSeries Protocol, set Modbus submenu to “No”.
To select Modbus Protocol, set Modbus submenu to “Yes”.

If Modbus Protocol was selected, the following Communications Parameters must be set as: No Parity, 8-bit Data Bit, 1-Stop Bit. Do not attempt to change these parameters.

LINE FEED SUBMENU:

Determines if data sent from the instrument will have a Line Feed appended to the end - useful for viewing or logging results on separate lines when displayed on communications software at a computer.

Press 22) Display flashes previous selection for “Line Feed”.
Press 23) Scroll through the available selections: NO, YES.
Press 24) Display shows stored message momentarily and then advances to only, if it was changed, otherwise press to advance to Echo Submenu.
ECHO SUBMENU:

When valid commands are sent to the instrument, this determines whether the command will be echoed to the Serial Bus. Use of echo is recommended in most situations, especially to help verify that data was received and recognized by the instrument.

Press ▼ 25) Display flashes previous selection for “Echo”.
Press ▲ 26) Scroll through the available selections: NO, YES.
Press ◀ 27) Display flashes STRD stored message momentarily and then advances to STD only if it was changed, otherwise press ◀ to advance to STD Communication Standard Submenu.

COMMUNICATION INTERFACE STANDARD SUBMENU:

Determines whether device should be connected to an RS-232C serial port (as is commonly used on IBM PC-compatible computers) or via an RS-485 bus connected through appropriate RS-232/485 converter. When used in RS-485 Mode, the device must be accessed with an appropriate Address Value as selected in the Address Submenu described later.

Press ▼ 28) Display flashes previous selection for “Standard”.
Press ◀ 30) Display shows STRD stored message momentarily and then advances to MODE only, if it was changed, otherwise press ◀ to advance to MODE Data Flow Mode Submenu.

DATA FLOW MODE SUBMENU:

Determines whether the instrument will wait for commands and data requests from the Serial Bus or whether the instrument will send data automatically and continuously to the Serial Bus. Devices configured for the RS-485 Communications Standard operate properly only under Command Mode.

Press ▼ 31) Display flashes previous selection for “Mode”.
Press ◀ 33) Display shows STRD stored message momentarily and then advances to SEPR only, if it was changed, otherwise press ◀ to advance to SEPR Data Separation Submenu.
DATA SEPARATION CHARACTER SUBMENU:

Determines whether data sent from the device in Continuous Data Flow Mode will be separated by spaces or by Carriage Returns.

Press 34) Display flashes previous selection for “Separation” Submenu.
Press 35) Scroll through the available selections: SPACE “Space” or CARRIAGE RETURN “Carriage Return”.
Press 36) Display shows STORED stored message momentarily and then advances to DAT.F only, if it was changed, otherwise press to advance to DAT.F Data Format Submenu.

DATA FORMAT SUBMENU:

Preformatted data can be sent automatically or upon request from the instrument. Use the Data Format Submenus to determine what data will be sent in this preformatted data string. Refer to the iSeries Communications Manual for more information about the data format. At least one of the following suboptions must be enabled and hence output data to the Serial Bus.

This menu is applicable for Continuous Mode of RS-232 communication.

Press 37) Display advances to STAT Alarm Status Submenu.

ALARM STATUS SUBMENU:

Includes Alarm Status bytes in the data string.

Press 38) Display flashes previous selection for “Status” (alarm status).
Press 39) Scroll through the available selections: NO, YES.
Press 40) Display shows STORED stored message momentarily and then advances to RDNG only, if it was changed, otherwise press to advance to RDNG Reading Submenu.

MAIN READING SUBMENU:

Includes Main Reading in the data string.

Press 41) Display flashes previous selection for “Reading”.
Press 42) Scroll through the available selections: NO, YES.
Press 43) Display shows STORED stored message momentarily and then advances to PEAK only, if it was changed, otherwise press to advance to PEAK Peak Submenu.
PEAK VALUE SUBMENU:

Includes Peak Value in the data string.

Press 44) Display flashes previous selection for PEAK Submenu.
Press 45) Scroll through the available selections: NO, YES.
Press 46) Display shows STRD stored message momentarily and then advances to VALY only, it was changed, otherwise press 6 to advance to VALY Valley Submenu.

VALLEY VALUE SUBMENU:

Includes Valley Value in the data string.

Press 47) Display flashes previous selection for “Valley”.
Press 48) Scroll through the available selections: NO, YES.
Press 49) Display shows STRD stored message momentarily and then advances to UNIT only, if it was changed, otherwise press 6 to advance to UNIT Temperature Unit Submenu.

TEMPERATURE UNIT SUBMENU:

Includes a byte in the data string to indicate whether reading is in Celsius or Fahrenheit.

Press 50) Display flashes previous selection for UNIT.
Press 51) Scroll through the available selections: NO, YES.
Press 52) Display shows STRD stored message momentarily and then advances to ADDR only, if it was changed, otherwise press 6 to advance to ADDR Address Setup Submenu.

ADDRESS SETUP SUBMENU:

Note This menu is applicable to the RS-485 Option only.

Press 53) Display advances to “Address Value” (0000 to 0199) Submenu.

ADDRESS VALUE SUBMENU:

Press 54) Display flashes 1st digit of previously stored Address Value.
Press 55) Press 6 and 7 to enter new “Address Value”.
Press 56) Display shows STRD stored message momentarily and then advances to TR.TM only, if it was changed, otherwise press 6 to advance to TR.TM Transmit Time Interval Submenu.
TRANSMIT TIME INTERVAL SUBMENU:

This menu is applicable if “Continuous” Mode was selected in the “Data Flow Mode” Submenu and the device is configured as an RS-232C Standard device. Also, one or more options under the Data Format Submenu must be enabled.

Press \(\textbf{57} \) Display advances to “Transmit Time Value” Submenu.

TRANSMIT TIME INTERVAL VALUE SUBMENU:

Determines the interval at which data will be emitted to the RS-232 Serial Bus when the instrument is in Continuous Data Flow Mode.

Press \(\textbf{58} \) Display flashes 1st digit of previous “Transmit Time Value” in seconds.

Press \(\textbf{59} \) Press \(\uparrow \) and \(\downarrow \) to enter new “Transmit Time Value”, e.g. 0030 will send the data every 30 seconds in Continuous Mode.

Press \(\textbf{60} \) Display shows \(\text{SERD} \) stored message momentarily and then advances to \(\text{COLR} \) only, if it was changed, otherwise press \(\Theta \) to advance to \(\text{COLR} \) Color Display Selection Menu.

For more details, refer to the Communication Manual available at the website listed on the cover page of this manual or on the CD-ROM enclosed with your shipment.
3.2.12 DISPLAY COLOR SELECTION

This submenu allows the user to select the color of the display.

![Flow Chart for Display Color Selection](image)

ENTER DISPLAY COLOR SELECTION MENU:

1) Press \(\text{CNFG} \), if necessary, until \(\text{CNFG} \) prompt appears.
2) Display advances to \(\text{INPT} \) Input Menu.
3) Press \(\text{CNFG} \), if necessary, until Display advances to \(\text{COLR} \) Display Color Selection Menu.
4) Display advances to \(\text{N.CLR} \) Normal Color Submenu.

NORMAL COLOR DISPLAY SUBMENU:

5) Display flashes the previous selection for “Normal Color”.
6) Scroll through the available selections: \(\text{GRN}, \text{RED}, \text{AMBR} \).
7) Display shows \(\text{STRD} \) stored message momentarily and then advances to \(\text{2.CLR} \) only, if it was changed, otherwise press \(\text{CNFG} \) to advance to \(\text{2.CLR} \) Alarm 2 Display Color Submenu.

Note: The menu below allows the user to change the color of display when alarm is triggered.
ALARM 2 DISPLAY COLOR SUBMENU:

Press 8) Display flashes previous selection for “Alarm Color Display”.
Press 9) Scroll through the available selections: GRN, RED or AMBR.
Press 10) Display shows STRD stored message momentarily and then momentarily shows the software version number, followed by RST Reset, and then proceeds to the Run Mode.

IN ORDER TO DISPLAY ONE COLOR, SET THE SAME DISPLAY COLOR ON BOTH SUBMENUS ABOVE.

Example 1:

Alarm 2 Setup: Absolute, Above, Alarm 2 HI Value “ALR.H” = 200,
Color Display Setup: Normal Color “N.CLR” = Green, Alarm 2 Color “2.CLR” = Red

Display Colors change sequences:

GREEN | RED
0 | AL2.H = 200

Example 2:

Alarm 2 Setup: Absolute, Below, Alarm 2 Low Value “ALR.L” = 300,
Color Display Setup: ”N.CLR” = Green, ”2.CLR” = Red

Display Colors change sequences:

RED | GREEN
0 | AL2.L = 300
Example 3:

Setpoint 2: 200
Alarm 2 Setup: Deviation, Band, “ALR.H” = 10
Color Display Setup: “N.CLR” = Green, “2.CLR” = Amber

Display Colors change sequences:

<table>
<thead>
<tr>
<th>AMBER</th>
<th>GREEN</th>
<th>AMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>190</td>
<td>200</td>
</tr>
</tbody>
</table>

Example 4:

Setpoint 2: 200
Alarm 2 Setup: Deviation, Hi/Low, “ALR.H” = 10, “ALR.L” = 5
Color Display Setup: “N.CLR” = Green, “2.CLR” = Red

Display colors change sequences:

<table>
<thead>
<tr>
<th>RED</th>
<th>GREEN</th>
<th>RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>195</td>
<td>200</td>
</tr>
</tbody>
</table>

Reset: The instrument automatically resets after the last menu of the Configuration Mode has been entered. After the instrument resets, it advances to the Run Mode.
PART 4
SPECIFICATIONS

Accuracy
±0.5°C temp; 0.03% reading process

Resolution
1°/0.1°; 10 µV process

Temperature Stability
1) RTD: 0.04°C/°C
2) TC @ 25°C (77°F): 0.05°C/°C
- Cold Junction Compensation
3) Process: 50 ppm/°C

NMRR
60 dB

CMRR
120 dB

A/D Conversion
Dual slope

Reading Rate
3 samples per second

Digital Filter
Programmable

Display
Single 4-digit, 9-segment LED,
21 mm (0.83"")
red, green and amber programmable colors for process variable, set point and temperature units

Warm up to Rated Accuracy
30 min.

INPUT
Input Types
Thermocouple, RTD, Analog Voltage,
Analog Current

Thermocouple Type (ITS90)

Thermocouple Lead Resistance
100 ohm max

RTD Input (ITS 68)
100/500/1000 Ω Pt sensor, 2-, 3- or 4-wire; 0.00385 or 0.00392 curve

Voltage Input
0 to 100 mV, 0 to 1 V, 0 to 10 Vdc

Input Impedance
10 MΩ for 100 mV
1 MΩ for 1 or 10 Vdc

Current Input
0 to 20 mA (5 ohm load)

Configuration Single-ended

Polarity Unipolar

Step Response 0.7 sec for 99.9%

Decimal Selection
None, 0.1 for temperature
None, 0.1, 0.01 or 0.001 for process

Setpoint Adjustment
-1999 to 9999 counts

Span Adjustment
0.001 to 9999 counts

Offset Adjustment
-1999 to +9999

ANALOG OUTPUT (programmable)
Isolated, Retransmission 0 to 10 Vdc or 0 to 20 mA, 500 Ω max.
Accuracy is 1% of FS, for Scaling Gain from 0.03 to 100 mV per count
Isolation is 1000 Vdc
Linearity is 0.2%

EXCITATION
(optional in place of Communication)
24 Vdc @ 25 mA
Not available for Low Power Option
GENERAL

Line Voltage/Power
90-240 Vac +/-10%, 50-400 Hz*
110-375 Vdc, equivalent voltage
5 W, power consumption
* No CE compliance above 60 Hz

Low Voltage/Power Option
20-36 Vdc, 4 W**, power consumption
External power source must meet Safety Agency Approvals.
** Units can be powered safely with 24 Vac but, no Certification for CE/UL are claimed.

External Fuse Required
Time-Delay, UL 248-14 listed:
100 mA/250 V
400 mA/250 V (Low Voltage/Power Option)

Time-Lag, IEC 127-3 recognized:
100 mA/250 V
400 mA/250 V (Low Voltage/Power Option)

Environmental Conditions
0 to 55°C (32 to 131°F), 90% RH non-condensing
0 to 50°C (32 to 122°F) for UL only.
90% RH non-condensing

Approvals
FM, UL, C-UL, and see CE Approval Section

Dimensions iDRA
92.5H x 125.2D x 32.1W mm
(3.64 x 4.93 x 1.27")
204g (0.45lb)

Optional Remote Programmer iDRP
48H x 96W x 39D mm (1.89 x 3.78 x 1.55")
159g (0.35lb)

1/8 DIN Panel Cutout
Optional Remote Programmer iDRP:
45H x 92W mm (1.772" x 3.622 ")

COMMUNICATIONS
(Optional in place of excitation)

RS-232/RS-422/RS-485/MODBUS:
Selectable from menu; both ASCII and modbus protocol selectable from menu. Programmable 300 to 19.2 K baud; complete programmable setup capability; program to transmit current display, alarm status, min/max, actual measured input value and status.

RS-485
Addressable from 0 to 199

ALARM 2 (programmable):
Type
Programmable to display color change

Relay*
250 Vac or 30 Vdc @ 3 A
(Resistive Load)

Output 1: not available

Output 2*: SPDT type, can be configured as Alarm 2 output

SSR*
20-265 Vac @ 0.05-0.5 A
(Resistive Load); continuous

DC Pulse*
Non-Isolated; 10 Vdc @ 20 mA
* Only with -AL Alarm Option

Operation
High/low, above/below, latch/unlatch, normally open/normally closed and process/deviation; front panel configurations

INSULATION
Power to Input/Output,
2300 Vac per 1 min. test,
1500 Vac per 1 min. test,
(Low Power Option)

Power to Relays/SSR Outputs,
2300 Vac per 1 min. test

Relays/SSR to Relay/SSR Outputs,
2300 Vac per 1 min. test

RS-232/485 to Inputs/Outputs,
500 Vac per 1 min. test
<table>
<thead>
<tr>
<th>TC</th>
<th>Input Type</th>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Iron-Constantan</td>
<td>-210 to 760°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-346 to 1400°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>K</td>
<td>CHROMEGA®-ALOMEGA®</td>
<td>-270 to -160°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-160 to 1372°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-454 to -256°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-256 to 2502°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>T</td>
<td>Copper-Constantan</td>
<td>-270 to -190°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-190 to 400°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-454 to -310°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-310 to 752°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>E</td>
<td>CHROMEGA-Constantan</td>
<td>-270 to -220°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-220 to 1000°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-454 to -364°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-364 to 1832°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>R</td>
<td>Pt/13%Rh-Pt</td>
<td>-50 to 40°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 to 1788°C</td>
<td>0.5°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-58 to 104°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104 to 3250°F</td>
<td>0.9°F</td>
</tr>
<tr>
<td>S</td>
<td>Pt/10%Rh-Pt</td>
<td>-50 to 100°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 to 1768°C</td>
<td>0.5°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-58 to 212°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>212 to 3214°F</td>
<td>0.9°F</td>
</tr>
<tr>
<td>B</td>
<td>30%Rh-Pt/6%Rh-Pt</td>
<td>200 to 640°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640 to 1820°C</td>
<td>0.5°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>212 to 1184°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1184 to 3308°F</td>
<td>0.9°F</td>
</tr>
<tr>
<td>C</td>
<td>5%Re-W/26%Re-W</td>
<td>0 to 2354°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32 to 4253°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>N</td>
<td>Nicrosil-Nisil</td>
<td>-250 to -100°C</td>
<td>1.0°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-100 to 1300°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-418 to -148°F</td>
<td>1.8°F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-148 to 2372°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>L</td>
<td>J</td>
<td>-200 to 900°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-328 to 1652°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>RTD</td>
<td>Pt, 0.00385, 100 Ω, 500 Ω, 1000 Ω</td>
<td>200 to 900°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-328 to 1652°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>RTD</td>
<td>Pt, 0.00392, 100 Ω, 500 Ω, 1000 Ω</td>
<td>-200 to 850°C</td>
<td>0.4°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-328 to 1562°F</td>
<td>0.7°F</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Voltage</td>
<td>0 to 100 mV, 0 to 1 V, 0 to 10 Vdc</td>
<td>0.03% rdg</td>
</tr>
<tr>
<td>PROCESS</td>
<td>Current</td>
<td>0 to 20 mA, 4 to 20 mA</td>
<td>0.03% rdg</td>
</tr>
</tbody>
</table>
PART 5
FACTORY PRESET VALUES

Table 5.1 Factory preset value

<table>
<thead>
<tr>
<th>MENU ITEMS</th>
<th>FACTORY PRESET VALUES</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Point 2 (SP2)</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Input:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Type (INPT)</td>
<td>TC, type K</td>
<td></td>
</tr>
<tr>
<td>Reading Configuration (RDG):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal Point (DEC.P)</td>
<td>FFF,F</td>
<td></td>
</tr>
<tr>
<td>Temperature unit (TEMP)</td>
<td>°F</td>
<td></td>
</tr>
<tr>
<td>Filter value (FLTR)</td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td>ANALOG OUTPUT (Retransmission):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current/Voltage (CURR/VOLT)</td>
<td>Voltage (VOLT)</td>
<td></td>
</tr>
<tr>
<td>Scale and Offset</td>
<td>Reading: 0 - 999.9 cts, Output: 0 - 10 V</td>
<td></td>
</tr>
<tr>
<td>Alarm:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm 2 (ALR2)</td>
<td>Enable (ENBL)</td>
<td></td>
</tr>
<tr>
<td>Absolute/Deviation (ABSO/DEV)</td>
<td>Absolute (ABSO)</td>
<td></td>
</tr>
<tr>
<td>Latch/Unlatch (LTCH/UNLT)</td>
<td>Unlatch (UNLT)</td>
<td></td>
</tr>
<tr>
<td>Active (ACTV)</td>
<td>Above (ABOV)</td>
<td></td>
</tr>
<tr>
<td>Alarm Low (ALR.L)</td>
<td>-100.0</td>
<td></td>
</tr>
<tr>
<td>Alarm High (ALR.H)</td>
<td>400.0</td>
<td></td>
</tr>
<tr>
<td>Reading Adjust Value (R.ADJ):</td>
<td>000.0</td>
<td></td>
</tr>
<tr>
<td>Field Calibration (CAL°)</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID Value</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Full ID (FULL)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Set Point ID (ID.SP)</td>
<td>Disable (DSBL)</td>
<td></td>
</tr>
<tr>
<td>Communication Parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate (BAUD)</td>
<td>9600</td>
<td></td>
</tr>
<tr>
<td>Parity (PRTY)</td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td>Data bit (DATA)</td>
<td>7 bit</td>
<td></td>
</tr>
<tr>
<td>Stop Bit</td>
<td>1 bit</td>
<td></td>
</tr>
<tr>
<td>Modbus Protocol (M.BUS)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Line Feed (LF)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Echo (ECHO)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Standard Interface (STND)</td>
<td>RS-232 (232C)</td>
<td></td>
</tr>
<tr>
<td>Command Mode (MODE)</td>
<td>Command (CMD)</td>
<td></td>
</tr>
<tr>
<td>Separation (SEPR)</td>
<td>Space (SPCE)</td>
<td></td>
</tr>
<tr>
<td>Alarm Status (STAT)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Reading (RDNG)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Valley (VALY)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Units (UNIT)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multipoint Address (ADDR)</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Transmit Time (TR.TM)</td>
<td>0016</td>
<td></td>
</tr>
<tr>
<td>Display Color (COLR):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Color (N.CLR)</td>
<td>Green (GRN)</td>
<td></td>
</tr>
<tr>
<td>Alarm 2 Color (2.CLR)</td>
<td>Amber (AMBR)</td>
<td></td>
</tr>
</tbody>
</table>
This product conforms to the EMC directive 89/336/EEC amended by 93/68/EEC, and with the European Low Voltage Directive 72/23/EEC.

Electrical Safety EN61010-1:2001
Safety requirements for electrical equipment for measurement, control and laboratory.

Double Insulation

Pollution Degree 2

Dielectric withstand Test per 1 min

- Power to Input/Output: 2300Vac (3250Vdc)
- Power to Input/Output: 1500Vac (2120Vdc)
 (Low Voltage dc Power Option*)
- Power to Relays/SSR Output: 2300Vac (3250Vdc)
- Ethernet to Inputs: 1500Vac (2120Vdc)
- Isolated RS232 to Inputs: 500Vac (720Vdc)
- Isolated Analog to Inputs: 500Vac (720Vdc)
- Analog/Pulse to Inputs: No Isolation

Measurement Category I

Category I are measurements performed on circuits not directly connected to the Mains Supply (power). Maximum Line-to-Neutral working voltage is 50Vac/dc. This unit should not be used in Measurement Categories II, III, IV.

Transients Overvoltage Surge (1.2 / 50uS pulse)

- Input Power: 2500V
- Input Power: 1500V
 (Low Voltage dc Power Option*)
- Ethernet: 1500V
- Input/Output Signals: 500V

Note: *Units configured for external low power dc voltage, 20-36Vdc*

Immunity and Emissions requirements for electrical equipment for measurement, control and laboratory.

- EMC Emissions Table 4, Class B of EN61326
- EMC Immunity** Table 1 of EN61326

Note: **I/O signal and control lines require shielded cables and these cables must be located on conductive cable trays or in conduits. Furthermore, the length of these cables should not exceed 30 meters**

Refer to the EMC and Safety installation considerations (Guidelines) of this manual for additional information.
NEWPORT Electronics, Inc. warrants this unit to be free of defects in materials and workmanship for a period of **one (1) year** from the date of purchase. In addition to NEWPORT’s standard warranty period, NEWPORT Electronics will extend the warranty period for **four (4) additional years** if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT’s Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT’s WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT’s control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a “Basic Component” under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, or used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY / DISCLAIMER language, and additionally purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. **BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT’S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS).** The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available **BEFORE** contacting NEWPORT:

1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult NEWPORT for current repair charges. Have the following information available **BEFORE** contacting NEWPORT:

1. P.O. number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT’s policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

NEWPORT is a registered trademark of NEWPORT Electronics, Inc.

© Copyright 2006 NEWPORT Electronics, Inc. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT Electronics, Inc.