CONDUCTIVITY METER

Model DP-03

PRESTO-TEK CORPORATION

A Newport Electronics Company
2229 South Yale St.
Santa Ana, CA 92704-4426
Tel: (714) 540-5346
(800) 421-8660
Fax: (213) 725-3036
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>OPERATION</td>
<td>1</td>
</tr>
<tr>
<td>CALIBRATION PROCEDURE</td>
<td>2</td>
</tr>
<tr>
<td>CONVERSION TABLE</td>
<td>3</td>
</tr>
<tr>
<td>SAMPLE DILUTION</td>
<td>4</td>
</tr>
<tr>
<td>TABLE I</td>
<td>4</td>
</tr>
<tr>
<td>OUTLINE DRAWING</td>
<td>5</td>
</tr>
<tr>
<td>MODELS AVAILABLE</td>
<td>5</td>
</tr>
<tr>
<td>WARRANTY</td>
<td>6</td>
</tr>
</tbody>
</table>
DESCRIPTION

The Model DP-03 is a three-range conductivity instrument used to indicate the quantity of total dissolved solids in a water sample. It is temperature compensated from 55°F to 125°F. This is a portable, battery powered instrument using a standard 9-volt transistor battery. A 2000-Hz oscillator and amplifier provides a balanced AC signal to the sensor. The sensor electrodes are mounted in a movable turret for maximum utility. The case and head are molded ABS plastics, and measures overall only 8 x 3 x 2½ inches. It weighs a total of 10 ounces.

The scale is calibrated in both micromhos and parts per million. When solutions of NaCl or CaCO₃ are tested, a more accurate determination can be made using Table 1 in this manual.

Reading Conductivity beyond the Range of this Meter

If your instrument pegs out, you are beyond the range of the meter. To double the range, mix ½ sample with ½ distilled or deionized water. Then multiply your reading by two. To triple, or quadruple the range, cut your sample with ⅗ or ⅘ distilled water. Then multiply your reading by 3 or 4, respectively.

OPERATION

The following procedure is recommended when performing conductivity measurements with the DP series conductivity meters:

1. Check battery by simultaneously depressing both the test and calibrate buttons. Meter pointer should read at mid-scale in black band area. If pointer reads low, remove the four corner screws in back, lift cover and replace battery. If pointer reads high or low with new battery, see the Calibration Procedure section of this manual or return to Presto-Tek.

2. Rinse probe in distilled or deionized water.

3. Pour solution to be tested into cup. There should be no air bubbles in the cup, and the solution should be within ⅜ inch of the top of the cup. When using the remote probe, place the probe into the solution, being sure the
solution covers the bottom 1½ inches of the probe. Stir
to remove all air bubbles from the probe. Do not place
the probe tip on the bottom of the sample container or
against the side of the container when making a mea-
4. Press the test button and wait eight to 10 seconds for
temperature stabilization or until a constant reading is
attained. When using the multi-range meters, read results
on the lowest scale without pegging out.
5. After each test, rinse the probe in distilled or deionized
water. If this is not done, the electrode surfaces may be-
come coated with deposits left from dried test samples,
resulting in inaccurate test results.
6. To clean probes which have become coated, rinse in dis-
tilled or deionized water and rub the electrodes with a
“Q” tip. If this does not remove the deposits, clean in
10% Hydrochloric (HCl) acid for one minute and rinse
again with distilled or deionized water using a “Q” tip.
Repeat until probe surfaces are shiny bright.

CALIBRATION PROCEDURE

To calibrate the DP-03, three standard solutions — 45, 450,
and 4500 micromho values — are needed.

When both the test and calibration are depressed, if the
needle goes into the black area at mid-scale on the dial, the
electronics are functioning properly, and the battery is ade-
quate. However, this does not indicate that the probes are
clean and in calibration. For this reason, it is necessary to
check the calibration of the meter periodically — every 2–3
weeks with heavy usage, 2–3 months with intermittent use.

NOTE
It is important that the electrode surfaces
remain clean and bright — Do Not allow test
solutions to dry on the electrodes — rinse
clean with distilled or deionized water after use.

To check calibration, proceed as follows:
1. Clean electrodes with distilled water; use a “Q” tip if
necessary. Make sure electrode surfaces are bright and
shiny. If scaled, rinse with 10% Hydrochloric acid fol-
lowed by distilled water.
2. Open case and refer to outline drawing on page 5. Fill
sample cut or dip probe in 45-micromho solution and
with test button depressed, rotate left-hand adjust “50
full scale adjust” with a small screw driver until meter
reads 45 micromhos.
3. Clean electrodes with distilled water.
4. Using the 450-micromho solution, rotate right-hand ad-
just “500 full scale adjust” to 450 micromho reading.
5. Clean electrodes with distilled water.
6. Using the 4500-micromho solution, rotate adjust second
from right “5000 full scale adjust” to 4500 micromho
reading.
7. Clean electrodes with distilled water.
8. Repeat check on first adjust [item (2) above]. If unit
does not read 45 micromhos, repeat procedure.
9. Finally, press both test and calibrate buttons simulta-
neously and if needle does not go to the black area at
mid-scale, replace battery.

CONVERSION TABLE

TDS instruments that are used for the determination of
dissolved solids in water are basically water conductivity mea-
suring instruments. The fact that the quantity of dissolved
solids in parts per million by weight is directly proportional to
conductivity in micromhos per unit volume, makes possible
the use of a conductivity measurement to indicate the amount
of dissolved solids in a water sample. Table 1 shows the rela-
tionship of sodium chloride and calcium carbonate in parts per
million vs. conductivity in micromhos. The average drinking
water contains other dissolved solids as well as sodium chloride.
These have a higher weight per ion and, therefore, are higher
in parts per million for a conductivity value. TDS meters are
calibrated to more closely approximate municipal water charac-
teristics. Table I shows the TDS calibration vs. micromhos,
which is the accepted calibration used for conductivity instru-
mments.
solution covers the bottom 1½ inches of the probe. Stir to remove all air bubbles from the probe. Do not place the probe tip on the bottom of the sample container or against the side of the container when making a measurement.

4. Press the test button and wait eight to 10 seconds for temperature stabilization or until a constant reading is attained. When using the multi-range meters, read results on the lowest scale without pegging out.

5. After each test, rinse the probe in distilled or deionized water. If this is not done, the electrode surfaces may become coated with deposits left from dried test samples, resulting in inaccurate test results.

6. To clean probes which have become coated, rinse in distilled or deionized water and rub the electrodes with a “Q” tip. If this does not remove the deposits, clean in 10% Hydrochloric (HCl) acid for one minute and rinse again with distilled or deionized water using a “Q” tip. Repeat until probe surfaces are shiny bright.

CALIBRATION PROCEDURE

To calibrate the DP-03, three standard solutions — 45, 450, and 4500 micromho values — are needed.

When both the test and calibration are depressed, if the needle goes into the black area at mid-scale on the dial, the electronics are functioning properly, and the battery is adequate. However, this does not indicate that the probes are clean and in calibration. For this reason, it is necessary to check the calibration of the meter periodically — every 2–3 weeks with heavy usage, 2–3 months with intermittent use.

NOTE
It is important that the electrode surfaces remain clean and bright. Do Not allow test solutions to dry on the electrodes — rinse clean with distilled or deionized water after use.

To check calibration, proceed as follows:

1. Clean electrodes with distilled water; use a “Q” tip if necessary. Make sure electrode surfaces are bright and shiny. If scaled, rinse with 10% Hydrochloric acid fol-

owed by distilled water.

2. Open case and refer to outline drawing on page 5. Fill sample cut or dip probe in 45-micromho solution and with test button depressed, rotate left-hand adjust “50 full scale adjust” with a small screw driver until meter reads 45 micromhos.

3. Clean electrodes with distilled water.

4. Using the 450-micromho solution, rotate right-hand adjust “500 full scale adjust” to 450 micromho reading.

5. Clean electrodes with distilled water.

6. Using the 4500-micromho solution, rotate adjust second from right “5000 full scale adjust” to 4500 micromho reading.

7. Clean electrodes with distilled water.

8. Repeat check on first adjust [item (2) above]. If unit does not read 45 micromhos, repeat procedure.

9. Finally, press both test and calibrate buttons simultaneously and if needle does not go to the black area at mid-scale, replace battery.

CONVERSION TABLE

TDS instruments that are used for the determination of dissolved solids in water are basically water conductivity measuring instruments. The fact that the quantity of dissolved solids in parts per million by weight is directly proportional to conductivity in micromhos per unit volume, makes possible the use of a conductivity measurement to indicate the amount of dissolved solids in a water sample. Table 1 shows the relationship of sodium chloride and calcium carbonate in parts per million vs. conductivity in micromhos. The average drinking water contains other dissolved solids as well as sodium chloride. These have a higher weight per ion and, therefore, are higher in parts per million for a conductivity value. TDS meters are calibrated to more closely approximate municipal water characteristics. Table 1 shows the TDS calibration vs. micromhos, which is the accepted calibration used for conductivity instruments.
SAMPLE DILUTION

If the conductivity exceeds the range of the instrument, the sample may be diluted with distilled or deionized water. To reduce the conductivity by a factor of ten, add 1 part of sample solution to 9 parts of distilled water. Test the combined solution and multiply reading by ten.

Example:

1 oz of 30,000 µMho solution
9 oz of distilled water
10 oz Total

Conductivity of combination = 3,000
3,000 x 10 = 30,000 µmhos

<table>
<thead>
<tr>
<th>TDS PPM</th>
<th>µMhos</th>
<th>NaCl PPM</th>
<th>CaCO₃ PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>15,000</td>
<td>8,400</td>
<td>7,250</td>
</tr>
<tr>
<td>6,660</td>
<td>10,000</td>
<td>5,500</td>
<td>4,700</td>
</tr>
<tr>
<td>5,000</td>
<td>7,500</td>
<td>4,000</td>
<td>3,450</td>
</tr>
<tr>
<td>4,000</td>
<td>6,000</td>
<td>3,200</td>
<td>2,700</td>
</tr>
<tr>
<td>3,000</td>
<td>4,500</td>
<td>2,350</td>
<td>2,000</td>
</tr>
<tr>
<td>2,000</td>
<td>3,000</td>
<td>1,550</td>
<td>1,300</td>
</tr>
<tr>
<td>1,000</td>
<td>1,500</td>
<td>750</td>
<td>640</td>
</tr>
<tr>
<td>750</td>
<td>1,125</td>
<td>560</td>
<td>475</td>
</tr>
<tr>
<td>666</td>
<td>1,000</td>
<td>490</td>
<td>420</td>
</tr>
<tr>
<td>500</td>
<td>750</td>
<td>365</td>
<td>315</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>285</td>
<td>250</td>
</tr>
<tr>
<td>250</td>
<td>375</td>
<td>175</td>
<td>150</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>71</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>100</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>37.5</td>
<td>17.5</td>
<td>15</td>
</tr>
<tr>
<td>6.6</td>
<td>10</td>
<td>4.7</td>
<td>4</td>
</tr>
</tbody>
</table>

OUTLINE DRAWING

MODELS AVAILABLE

Models:
DP-04 — 0–1200 ppm & 0–1800 micromhos
DP-05 — 0–5000 ppm & 0–7500 micromhos
DP-10 — 0–10 ppm & 0–15 micromhos
DP-03 — Three Range — 0–50, 500, 5000 ppm &
 0–75, 750, 7500 micromhos
SAMPLE DILUTION

If the conductivity exceeds the range of the instrument, the sample may be diluted with distilled or deionized water. To reduce the conductivity by a factor of ten, add 1 part of sample solution to 9 parts of distilled water. Test the combined solution and multiply reading by ten.

Example:

1 oz of 30,000 μMho solution
9 oz of distilled water
10 oz Total

Conductivity of combination = 3,000
3,000 x 10 = 30,000 μmhos

TABLE 1

<table>
<thead>
<tr>
<th>TDS PPM</th>
<th>μMhos</th>
<th>NaCl PPM</th>
<th>CaCO₃ PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>15,000</td>
<td>8,400</td>
<td>7,250</td>
</tr>
<tr>
<td>6,660</td>
<td>10,000</td>
<td>5,500</td>
<td>4,700</td>
</tr>
<tr>
<td>5,000</td>
<td>7,500</td>
<td>4,000</td>
<td>3,350</td>
</tr>
<tr>
<td>4,000</td>
<td>6,000</td>
<td>3,200</td>
<td>2,700</td>
</tr>
<tr>
<td>3,000</td>
<td>4,500</td>
<td>2,350</td>
<td>2,000</td>
</tr>
<tr>
<td>2,000</td>
<td>3,000</td>
<td>1,550</td>
<td>1,300</td>
</tr>
<tr>
<td>1,000</td>
<td>1,500</td>
<td>750</td>
<td>640</td>
</tr>
<tr>
<td>750</td>
<td>1,125</td>
<td>560</td>
<td>475</td>
</tr>
<tr>
<td>666</td>
<td>1,000</td>
<td>490</td>
<td>420</td>
</tr>
<tr>
<td>500</td>
<td>750</td>
<td>365</td>
<td>315</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>285</td>
<td>250</td>
</tr>
<tr>
<td>250</td>
<td>375</td>
<td>175</td>
<td>150</td>
</tr>
<tr>
<td>100</td>
<td>150</td>
<td>71</td>
<td>60</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>37.5</td>
<td>17.5</td>
<td>15</td>
</tr>
<tr>
<td>6.6</td>
<td>10</td>
<td>4.7</td>
<td>4</td>
</tr>
</tbody>
</table>

OUTLINE DRAWING

MODELS AVAILABLE

Models:
DP-04 — 0–1200 ppm & 0–1800 micromhos
DP-05 — 0–5000 ppm & 0–7500 micromhos
DP-10 — 0–10 ppm & 0–15 micromhos
DP-03 — Three Range — 0–50, 500, 5000 ppm & 0–75, 750, 7500 micromhos
LIMITED WARRANTY

The Model DP-03 meter is fully warranted for a period of one year, as to defects in material or workmanship. Equipment returned is prepaid to the factory. If in the opinion of the factory, failure was due to material or workmanship, repair or replacement will be made without charge and returned at no charge. A normal service charge will be made for repairs made due to mistreatment, normal wear, or made on equipment out of warranty.