Serial Communication

INFCAC

Operator’s Manual
Additonal products from

NEWPORT Electronics, Inc.

Counters Rate Meters
Frequency Meters Timers
PID Controllers Totalizers
Clock/Timers Strain Gauge Meters
Printers Voltmeters
Process Meters Multimeters
On/Off Controllers Soldering Iron Testers
Recorders pH pens
Relative Humidity pH Controllers
Transmitters pH Electrodes
Thermocouples RTDs
Thermistors Thermowells
Wire Flow Sensors

For Immediate Assistance
In the U.S.A. and Canada: 1-800-NEWPORT®
In Mexico: (95) 800-NEWPORT™
Or call your local NEWPORT Office.

NEWPORTnet™ On-Line Service
http://www.newportinc.com

Internet e-mail
info@newportinc.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

⚠️ This device is marked with the international hazard symbol. It is important to read the Setup Guide before installing or commissioning this device as it contains important information relating to safety and EMC.
SERIAL COMMUNICATION MANUAL

INTRODUCTION

This manual describes the pertinent information for communication protocol used for the true RMS volt/current meter. This information describes all communication commands and their format in order to establish a serial link between a computer and/or a PLC and the meter. The information in the manual describes both the RS232 and RS485 serial interface card.

I. COMMUNICATION COMMAND AND RESPONSE FORMAT:

i. Command format:

*[nn]Ccc[data][hh]<cr>

ii. Response format:

a. Correct response :
 1. If UNIT is in echo mode (see list of commands for "BUS FORMAT"):

 [nn]Ccc[data][hh]<cr>[/lf]

 2. If UNIT is not in echo mode :

 i. for the commands which require the data back:

 [nn]data[hh]<cr>[/lf]

 ii. for the commands which do not require the data:

 NO RESPONSE

b. Error response :

 i. If UNIT is in echo mode :

 [nn]?ee<cr>[/lf]

 ii. If UNIT is in not in echo mode:

 ?ee<cr>[/lf]
Where:

[] Brackets indicate the enclosed item is used wherever applicable.

* Is the security recognition character (this character can be changed, refer to the list of commands below).

nn Is the device address in hexadecimal based when unit is in RS485 mode, and is from 00 to FF. 00 address is used for broadcasting from the host.

C Is the command letter (1st character). Capitals are used for command letters.

cc Command index is a hexadecimal number from 01 to FF.

"W" For write to the EEPROM in hexadecimal base.

"R" For read from the EEPROM in hexadecimal based.

"P" For write into RAM in hexadecimal based.

"G" For read from the RAM in hexadecimal based.

"Z" For reset commands.

"E" For enable commands.

"D" For disable commands.

"X" For reading the measurement values in decimal base.

"U" For reading the status.

"V" This command is used to make the unit send a stream of preselected data items such as measurement reading value, peak, valley, date, time and alarm status.

data Is one to four bytes (2 to 8 characters respectively). It will be hexadecimal based except for reading the measurement/display values, time and date commands. When meter is transmitting display reading, time or date they will be transmitted as HEX-ASCII. This means that each byte is divided into two nibbles and the ASCII code for each nibble is transmitted separately. This is the preferred
method when working with printers.

hh Are checksum characters. (It will always be off in calibration mode).

<lf> Line feed.

?ee Special code indicating an error has occurred as:

1. Command error ?43
2. Format error ?46
3. Checksum error ?48
4. Parity error ?50
5. Address, recog. char errors ?56

Where:

i. Command error occurs for invalid command letters and indexes.

ii. Format error occurs if length of the data is either shorter or longer than it should be or any other value than "0-F" for hexadecimal.

<cr> Carriage return is always transmitted by the UNIT for the last character.
II. SINGLE COMMANDS:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th># OF BYTES</th>
<th># OF CHARs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPRW</td>
<td>Setpoint 1 value</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>GPRW</td>
<td>Setpoint 2 value</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>GPRW</td>
<td>Reading offset</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>RW</td>
<td>Output offset</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>RW</td>
<td>Frequency/Input range</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>--</td>
<td>Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RW</td>
<td>Coupling</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>--</td>
<td>Error</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GPRW</td>
<td>Decimal point</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Unit/Filter time constant</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Error</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GPRW</td>
<td>Reading scale</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>--</td>
<td>Error</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GPRW</td>
<td>Setpoint 1 Config</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Setpoint 2 Config</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Setpoint 1 dead band</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>GPRW</td>
<td>Setpoint 2 dead band</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>--</td>
<td>Error</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RW</td>
<td>Output Configuration</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>RW</td>
<td>Analog Output Scale</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>--</td>
<td>15-1F Error</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RW</td>
<td>Communication Parameters</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Communication Bus format</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Communication Data Format</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Communication address</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Communication transmit time</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>GPRW</td>
<td>Communication Recognition ch.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>GPRW</td>
<td>Time</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>GPRW</td>
<td>Date</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>GPRW</td>
<td>Date ID</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>--</td>
<td>Error</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GPRW</td>
<td>Clock calibration</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTES:

1. G, P, R, W means read from RAM, write to RAM, read from EEPROM, write to the EEPROM respectively.

2. When writing to the EEPROM it is necessary to reset the meter for the new value to take effect.
3. Examples: assume "*" as recognition character, echo mode, meter address is 15 decimal or 0F hex.

 a. To change SETPOINT # 1 DEADBAND to 1.00

 Assuming system decimal point is 2. For deadband we only need to send the value excluding decimal point therefore value is 100 decimal or 0064 hex.

 1. To change the RAM content in RS232 mode:

 Send : *P100064<CR>
 meter will respond : P10<CR>

 2. To change the EEPROM content in RS232 mode:

 Send : *W100064<CR>
 meter will respond : W10<CR>

 3. To change the RAM content in RS485 mode:

 Send : *0FP100064<CR>
 meter will respond : 0FP10<CR>

 b. To read the above value:

 1. From RAM in RS232 mode:

 Send : *G10<CR>
 meter will respond : G100064<CR>

 2. From EEPROM in RS485 mode:

 Send : *0FR10<CR>
 meter will respond : 0FR100064<CR>
III. BLOCK COMMANDS:

These commands are for more than one item as:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION OF ITEMS INCLUDED</th>
<th># OF</th>
<th># OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFIX INDEX (HEX)</td>
<td>(HIGHEST TO LOWEST BYTES)</td>
<td>BYTES</td>
<td>CHAR</td>
</tr>
<tr>
<td>GPRW 80</td>
<td>ID-Date-time</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>RW 81</td>
<td>OUT.OFF, OUT.SCL, RDG.OFF, RDG.SCL, SP1, SP2.</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>RW 82</td>
<td>Spare(one byte), Comm. recog. char., Comm. transmission time, Data format, Bus format, Comm. address, Comm. parameter, Setpt 2 dead band, Setpt 1 dead band, Setpt 2 config., Setpt 1 config., Output config., spare(one byte) Unit/Filter time. Decimal point, Freq/Input, Coupling</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>RW 83</td>
<td>1st set of reading scale & offset IN1-RD1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>RW 84</td>
<td>2nd set of reading scale & offset IN2-RD2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>RW 85</td>
<td>1st set of output scale at offset DSP1-OUT1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>RW 86</td>
<td>2nd set of output scale at offset DSP2-OUT2</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
IV. OTHER COMMANDS:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>PREFIX INDEX</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>01</td>
<td>Disable alarms.</td>
</tr>
<tr>
<td>D</td>
<td>02</td>
<td>Disable all front panel push buttons.</td>
</tr>
<tr>
<td>D</td>
<td>03</td>
<td>Disable menu push button.</td>
</tr>
<tr>
<td>D</td>
<td>04</td>
<td>Display hold.</td>
</tr>
<tr>
<td>D</td>
<td>05</td>
<td>Measurement hold.</td>
</tr>
<tr>
<td>E</td>
<td>01</td>
<td>Enable alarms.</td>
</tr>
<tr>
<td>E</td>
<td>02</td>
<td>Enable all front panel push buttons.</td>
</tr>
<tr>
<td>E</td>
<td>03</td>
<td>Enable menu button.</td>
</tr>
<tr>
<td>E</td>
<td>04</td>
<td>Display run.</td>
</tr>
<tr>
<td>E</td>
<td>05</td>
<td>Enable measurement.</td>
</tr>
<tr>
<td>E</td>
<td>06</td>
<td>Activate alarm state.</td>
</tr>
<tr>
<td>E</td>
<td>07</td>
<td>Peak on display.</td>
</tr>
<tr>
<td>E</td>
<td>08</td>
<td>Valley on display.</td>
</tr>
<tr>
<td>E</td>
<td>09</td>
<td>Reading on display.</td>
</tr>
<tr>
<td>Z</td>
<td>01</td>
<td>Reset latched alarms.</td>
</tr>
<tr>
<td>Z</td>
<td>03</td>
<td>Power on reset.</td>
</tr>
<tr>
<td>Z</td>
<td>03</td>
<td>Hard reset.</td>
</tr>
<tr>
<td>Z</td>
<td>04</td>
<td>Reset peak.</td>
</tr>
<tr>
<td>Z</td>
<td>05</td>
<td>Reset valley.</td>
</tr>
<tr>
<td>U</td>
<td>01</td>
<td>Send alarms status.</td>
</tr>
<tr>
<td>U</td>
<td>02</td>
<td>Send peak/valley status.</td>
</tr>
<tr>
<td>U</td>
<td>03</td>
<td>Send program version.</td>
</tr>
<tr>
<td>X</td>
<td>01</td>
<td>Send reading.</td>
</tr>
<tr>
<td>X</td>
<td>02</td>
<td>Send peak.</td>
</tr>
<tr>
<td>X</td>
<td>03</td>
<td>Send Valley.</td>
</tr>
<tr>
<td>X</td>
<td>04</td>
<td>Send time.</td>
</tr>
<tr>
<td>X</td>
<td>05</td>
<td>Send date.</td>
</tr>
<tr>
<td>V</td>
<td>01</td>
<td>Send string of data.</td>
</tr>
</tbody>
</table>
NOTE: When reading alarm status or peak and valley, the meter responds by sending a special character which must be decoded according to the following table.

<table>
<thead>
<tr>
<th>symbol</th>
<th>alarm 1</th>
<th>alarm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>A</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>B</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>C</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>symbol</th>
<th>peak</th>
<th>valley</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>A</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>B</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>C</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

V. DESCRIPTION OF ITEMS:

1. Setpoint 1, Setpoint 2, Reading offset, Output offset:
 These are 3 bytes each in hex. format. (bits 0 to 23). Bits 0 to 19 are data in Hex format.
 Bits 20, 21, 22 are decimal point = 1, 2, 3, 4 for set points and 1, 2, 3, 4, 5, 6, 7 for offsets. call it DP. Bit 23 is sign. (=0/1 for positive/negative)

Set points notes:

a. Min/max values: -1999 to 9999.
b. Decimal point: same as display. Program will update setpoint decimal point if different from display without changing its values.
c. Decimal point value meaning: (VALUE) \times 10^{(1-DP)}

Offsets notes:

a. Min/max values: ±999999.
b. Decimal point: independent will be reformatted by the meter for max resolution.
c. Decimal point meaning: (value) \times 10^{(2-DP)}
2) **Frequency/input range:**

This is one byte as:
input range: bits 0 to 2 = 0 : 100mV or 1mA
= 1 : 1V or 10mA
= 2 : 10V or 100mA
= 3 : 100V or 1A
= 4 : 750V or 5A

Frequency: bits 4,5
= 0 : 50Hz
= 1 : 60Hz
= 2 : ALL

3. **Coupling is one byte as:**

 bit 0 = 0 DC coupling
 = 1 AC coupling

4. **Decimal Point is one byte:**

 This is the display decimal point = 1,2,3,4 for positions 1,2,3,4.
 Any change to the system decimal point will update setpoint decimal point without changing its value.

5. **Unit/Filter time constant: 1 byte as:**

 \[\text{time constant} \]
 Bit 0,1,2 = 0
 = 1
 = 2
 = 3
 = 4
 Bit 3 not used set to zero

 \[\text{unit on display} \]
 Bit 4-5
 =00 for V or A
 =01 for mV or mA
 =10 for no unit
 =11 not used

6. **Reading and output scales:** These are 3 bytes each in hex format, bits 0 to 23 as:
 Bits 0 to 18 are data in hex format
 Bits 19 is sign bit.
 Bits 20,21,22,23 are decimal point values.

Notes:

a. min/max values: +500000
b. decimal point meaning: (VALUE) x 10**(1-DP)
7. **Setpoint 1 or Setpoint 2 configuration:** these are 1 byte each as:

- **bit 0 = 0** active above
- **1** active below
- **1 = 0** Nonlatch
- **= 1** Latch

8. **Setpoint 1 or Setpoint 2 deadbands:** these are 2 bytes each in HEX format.

Notes:

- a. Min/max : 0 to 9999.
- b. Unit of measure and decimal point same as display.

9. **Output configuration:** this is one byte in hex format as:

- **bit 0 = 0** analog out volt mode.
- **1** analog out current mode.
- **bit 1 = 0** default output scale and offset
- **= 1** program output scale and offset.

Notes:

- a. If program selected then output scale and offset should be entered. (index items 04, 14)
- b. Default will use following values:
 - **Disp1: 0000** Out.1 = 00.00V (04.00 mA)
 - **Disp2: 9999** Out.2 = 10.00V (20.00 mA)

10. **Communication parameter is one byte hex format as:**

- **bit 0,1,2 = 0** 300 baud
- **= 1** 600 baud
- **= 2** 1200 baud
- **= 3** 2400 baud
- **= 4** 4800 baud
- **= 5** 9600 baud
- **= 6** 19200 baud
- **= 7** 19200 baud

- **bit 3-4 = 0** no parity
- **= 1** odd parity
- **= 2** even parity
- **= 3** even parity

- **bit 5 = 0** 7 data bit
- **= 1** 8 data bit

- **bit 6 = 0** 1 stop bit
- **= 1** 2 stop bit

- **bit 7** not used set to zero
NOTE: 1. Always one stop bit except for 7 data bit and no parity, where unit defaults to 2 stop bit.
2. When 8 data bit selected, only NO PARITY allowed.

11. Communication bus format is one byte in hex format as:

bit 0 = 0 no check sum
 = 1 check sum
1 = 0 no LF
 = 1 LF
2 = 0 no echo
 = 1 echo
bit 3 = 0 RS232C
 = 1 RS485
4 = 0 Continuous mode
 = 1 Command mode
5 = 0 Space between data items
 = 1 CR between data items
6 = 0 Newport protocol
 = 1 Mod Bus
7 = not used set to zero

12. Communication data format is one byte in hex format as:

Bit 0 = 0 do not send AL/Peak Valley status
 = 1 Send AL/Peak Valley status
1 = 0 do not send reading
 = 1 Send reading
2 = 0 do not send peak
 = 1 Send peak
3 = 0 do not send valley
 = 1 Send valley
4 = 0 do not send time
 = 1 Send time
5 = 0 do not send date
 = 1 Send date
6 = 0 do not send unit
 = 1 Send unit
7 = 0 do not send data ID
 = 1 Send ID for data

DATA ID: If this mode enabled then measurement data will be transmitted as:
 " R: data <CR> " or
 " P: data <CR> " or
 " V: data <CR>"

Where R, P, V stand for READING, PEAK, and VALLEY respectively.
13. **Communication address is one byte:**
 From 01 to C7 Hex (199 decimal). Address 00 is for broadcasting.

14. **Communication transit time:**
 Is 2 byte from 1 to 9999 seconds in hex format.
 0 means transmit as fast as possible, about 3 times a second.

15. **Communication recognition character:**
 Is the hex value of a character in ASCII table except: A,CARET,E,R,W,P,G.

16. **TIME:**
 Is 3 bytes in decimal format (24 hour system) as:
 (Hour) (Minute) (Second)

 Example: you want to update meter's time to 9:12:35 pm.
 execute following:

 *P26211235<CR>

17. **DATE!**
 Is a 4 bytes (2 characters for DATE ID, 6 characters for the date) in decimal format.
 The first 2 characters are DATE ID and it specifies the date format for the meter. 01 is for American format and 00 is for else. The remainder 3 bytes are date data.

 (ID) (DAY/MONTH) (MONTH/DAY) (YR)

 Example: you want to update the meter's date to 22 Oct. 94
 Execute the following:

 *P2701102294<CR> : 10/22/94

 or

 *P2700221094<CR> : 22/10/94

 Note: for years 2000 and more you will send 00,01, ...

18. **DATE ID:**
 Date ID is: 00 or 01
 00 is for Elsewhere date format: DAY/MONTH/YEAR
 01 is for American date format: MONTH/DAY/YEAR
FIGURE 1 – P10 & J5 RS232 OUTPUT CONNECTIONS

FIGURE 2 – SECURING THE SIGNAL BOARD WITH RS232 CARD
FIGURE 3 – P10 & J5 HALF-DUPLEX RS485 OUTPUT CONNECTIONS

FIGURE 4 -- SECURING THE SIGNAL BOARD WITH RS485 CARD
Warranty/Disclaimer

NEWPORT ELECTRONICS, INC. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from date of purchase. In addition to NEWPORT's standard warranty period, NEWPORT ELECTRONICS will extend the warranty period for one (1) additional year if the warranty card enclosed with each instrument is returned to NEWPORT.

If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.

CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.

The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting NEWPORT:
1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:
1. P.O. number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.

NEWPORT is a registered trademark of NEWPORT ELECTRONICS, INC.

© Copyright 1998 NEWPORT ELECTRONICS, INC. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT ELECTRONICS, INC.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. No. D336,895; 5,274,577/
Canada 2,052,600/Italy 1,249,456; 1,250,938/ Spain 2,039,150;9,102,259/ UK 2,249,837; 2,248,954/ France Brevet No. 91 12756.
The bezel design is a trademark of NEWPORT Electronics, Inc., registered in the U.S.